Compilers Compilers Compilers...

CPE 431
Aaron Keen

Editor’s Note

Hello Dr. Keen, it appears | have made it. It has been a sprint to the finish, and |

even surprised myself on what | have accomplished. Thank you for your seemingly
bottomless patience. This could be the last interaction we will have (unless | do the 4 +
1+ 1+ ...). Regardless, it has been a pleasure having you as an instructor.

Now... on to the report!

Overall Architecture

The CFG is constructed using Blocks as its foundation. A Block has exactly 1 previous
Black and 1 next Block. BasicBlocks are blocks of code (no conditionals, no loops, no jumps
into). Conditionals and Loops are special kinds of Blocks, where encapsulated inside each
structure are BasicBlocks representing the then branch, else branch, loop guard, and loop body.
The smaller components within Conditionals and Loops are not connected with each other, but
taken as a whole, a Conditional and Loop contains the logic to perform the control flow.

@diliunal

Then BasicBlock

Potential
k Block

Else BasicBlock

Potential
Block

~

v

/ oon

Guard
BasicBlock

Loop Body
BasicBlock

Potential
Block

Potential
Block

~

BasicBlock Conditional

A BasicBlock fundamentally is a list of ILOC instructions along with methods to
manipulate the list of ILOC instructions such as convert them into X86 instructions and obtaining
the gen set and liveOut set of this block.

Overall, the program will:

1) Perform static type checking

2) Ifit passes, generate a CFG

3) Perform constant folding if selected

4) Perform useless code analysis if selected

5) Display ILOC if desired

6) Generate the X86 instructions if X86 needs to be displayed

7) Display un-register-allocated X86 if desired

8) Construct an interference graph, deconstruct it, then obtain a mapping of Virtual

Registers to Real Registers on an entire function
9) Map all Virtual Registers to Real Registers
10) Display X86

Data Structures

There are 2 ways of representing Instructions and Registers. On the ILOC version,
instructions are ILOC instructions and registers are virtual registers. On the X86 version,
instructions are X86 instructions and registers are real registers. Through a magnificent
refactoring effort, VirtualRegister and RealRegister are subclasses of Register, and ILOC and
X86 are subclasses of Instruction.

Each ILOC and X86 instruction has its own Java class, and each ILOC instruction has a
method to convert the ILOC representation into a list of X86 instructions. All Instruction classes
also have a method to return source registers and destination registers.

Optimizations Implemented

Only 2 optimizations were implemented: useless code removal by critical code analysis
and constant folding.

Useless Code Removal

Useless Code Removal operates on the ILOC instructions. The general concept is that if
instructions or registers are not used in critical instructions, then they are not needed and can
be deleted. Critical instructions include function calls, loading in and storing out arguments, print
statements, return statements, and arithmetic that lead up to compute the values for critical
instructions.

Critical instructions are denoted by a boolean flag inside each ILOC Java class. Then a
listing of critical sources are obtained by the instructions “getSourceRegisters” method.

Reaching for definitions is the hardest part. First, the definitions must be searched for
within the current BasicBlock on the lines before the critical instruction. If none is found, it must
look so its predecessors. Each Block has a single predecessor. If a Block’s predecessor is a
Conditional, then that Block’s predecessor is the Conditional Block, not the 2 BasicBlock chains
that form a Conditional.

After identifying which instructions are needed, they are marked as needed. Then a
sweep phase removes all instructions which are not marked.

Constant Folding

Constant Folding is taking some computations away from runtime and into the compiler.
It involves constants and an operator, whose evaluation is another constant. For example 4 + 5
will always be 9, so the compiler can fold 4 + 5 into a single constant 9.

Constant folding best operates in the formation of the abstract syntax tree, but is also
doable in the construction of the control flow graph. If a constant is loaded into a register, that
register is marked as a constant and it will also save a reference to the instruction that loaded
the constant into it. If an operator such as “+” adds 2 registers, then if both registers are marked
as constants, then the optimizer will add the two constants together and insert it into program.
The previous 2 instructions used to load the two smaller constants are also removed from the
program.

fun main() int

{
int a;
a=1+2+3+4+5;
return a;

movq $1, %riil movq $15, %rbx
movq $2, %rbx movq %rbx, %rbx
movq %rbx, %rle movq %rbx, %rax
addq %rill, %rile jmp .main_RET
movq $3, %rbx
movq %rbx, %rbx
addq %rie, %rbx
movq $4, %rile
movqg %rle, %rle
addq %rbx, %rile
movq $5, %rbx
movq %rbx, %rbx
addq %rie, %rbx
movq %rbx, %rbx
movq %rbx, %rax
jmp .main_RET

Constant Folding OFF Constant Folding ON

Due to the way an AST can be constructed, avalueofa =1 + b + 3 + b + 5isnot
easily detectable. Desirably, it should be condensed intoa = b + 9. Even though addition is a
commutative property, more analysis needs to be done to observethatl + b + 3 + b + 5
are all commutative within the same level of operator precedence.

In addition to constant folding, conditional guards with a constant value can be evaluated
and optimize the code. If the conditional guard evaluates to a constant true or false, then an
entire branch can be eliminated, eliminating code that will never be run and removing possibly
jump statements.

fun main() int

{
int a;
if (4 < 6)

a = 22;

Q
1}

77;

return a;

movq $4, %rill movq $22, %rbx
movq $6, %rile movq %rbx, %rbx
movq $0, %rbx movq %rbx, %rax
cmpq %rle, %ril jmp .main_RET
movq $1, %rle
cmovlqg %rle, %rbx
cmpg $1, %rbx
je .11
jmp .12

L11:
movq $22, %rbx
movq %rbx, %ril2
jmp .13

.12:
movq $77, %rbx
movq %rbx, %ril2
jmp .13
jmp .13

.13:
movq %rl2, %rax
jmp .main_RET

Constant Folding OFF Constant Folding ON

Currently, constant propagation is not implemented, where local variables are given a
state whether it is a constant value. It would be a simple addition for the Mov instruction, in
order to propagate the status of being constant to other registers.

Global Copy Propagation

Global Copy Propagation is an optimization required for Milestone 5, but is not
implemented in my compiler. You will notice a fair number of redundant moving in my generated
code that would be eliminated if Global Copy Propagation was implemented.

Benchmark Checklist

Below are the list of benchmarks at a glance of what my compiler generates correct unoptimized
code for:

BenchMarkishTopics PASS bert PASS
biggest PASS binaryConverter PASS
creativeBenchMarkName PASS fact_sum PASS
Fibonacci PASS GeneralFunctAndOptimize PASS
hailstone PASS hanoi_benchmark FAIL

killerBubbles PASS mile1 PASS
mixed PASS OptimizationBenchmark FAIL

primes PASS programBreaker PASS
stats PASS TicTac PASS
uncreativeBenchmark PASS wasteOfCycles PASS

*hanoi_benchmark and OptimizationBenchmark are marked fail my compiler cannot spill those
registers. Bert also has register spilling, but | can do that one.

Performance

Only constant folding is a working optimization at this time.

The first benchmark to explore is Fibonacci. It will be compiled using gcc, both optimized and
unoptimized, then with my compiler, only unoptimized. There are no constant folding
opportunities in Fibonacci to run it optimized. Below is a chart displaying the relative
effectiveness of gcc.

Fibonacci

8 I occ
I occ-03
[Mini Un-
i opt
o
QL
g 4
=
2
0

Compilers

My compiler performs terribly! | will suggest that is because of the memory 10 operations
on pushing and popping the stack. Then all of the moves and copies adds to the time. In terms
of program space, my executable runs at 8060 bytes and gcc -O3 runs at 8075 bytes.

A better feel of my compiler can be drawn from snippets of OptimizationBenchmark. The

entire program will spill if | compile the entire thing, so | chopped it down to run only 2 functions:
constant folding and dead code elimination.

Constant Folding & Dead Code

0.004
0.003
=
]
£ 0.002
k=
0.001
0

Compilers

Hl occ

B occ-03
Mini Ln-
opt

B nini-

Constant

The times are so small that it is hard to measure. But a better way to measure fast
programs is by program size. My optimized executable runs at 7144 bytes and gcc -O3 runs at
6920 bytes. My unoptimized executable runs at 7464 bytes and gcc runs at 7080 bytes. | was
hoping that useless code removal would work here, and it does! If you take a peek at the .s file
generated by my compiler with useless code removal, then you will see that
DeadCodeElimination does shrink! But as an odd side effect, the return of constant folding does
not make it all the way to the printf. (You can see it as %rax moves to %rbx, then %r10 moves

to %rsi for the printf.) The return of DeadCodeElimination does work however.

One interesting feature | noticed was for gcc, it detected useless global saves, whereas

mines didn’t.

movqg $9, EV_globall(%rip)

movq %rbx, globall
movq $5, %rbx
movq %rbx, globall
movq $9, %rbx
movq %rbx, globall

gcec -03

Useless Code Removal

Issues

This section will bring to light some of the design choices | made out of necessity or
choice, and how they negatively impact the generated code or the architecture of the program.

Calling Convention

The calling convention requires that the caller save and restore any callee saved
registers and the callee save and restore any caller saved registers. At this stage, instead of
finely picking out which of the registers are alive at the time of the call, all registers are saved
onto the stack. For each call, 7 registers must be pushed, then 7 registers must be popped,
resulting in 14 memory operations per function call. Then for each function the user defined, 9
registers must be pushed and popped. This adds up to a lot of instructions, program space, and
10 operations.

Usable Registers

The number of usable free registers are a limited set. There are 16 registers available for
use, but many of them are reserved for special purposes. What | determined as the set of “free”
unreserved registers are rbx, ri10, rll, rl2, ri13, ril4, rl5. The others are used for
parameter passing, stack management, and the return code. According to my compiler, only 3
benchmarks found these 7 registers insufficient enough to operate and require spilling.

Copy Propagation

Copy Propagation would eliminate what | could possibly estimate as 30 or 40 percent of
useless moves. Really easy ones such as moving from a register to the same register could
easily be removed, but those efforts would be saved for copy propagation.

Critical Code Analysis

Critical Code Analysis is buggy for complex programs. It requires references to its
previous. By the way | structured my control flow graph, sometimes a block won’t have a
previous! So | had to make some workarounds to ensure that some reaching definitions got
detected, but it might not be perfect. For programs with a single block, it could be done.

References

Throughout this program, I've been repeatedly needed to reference the object that
claims ownership of me. For example, from a Register, which instructions use me? Or from an
instruction, which block do | belong in? What are my neighboring instructions? Even an
instruction linked list within an instruction would be nice. In addition, I've thought of the idea to
relax the condition that a Block must have 1 (or zero) previous Block and next Block. Maybe |
could have a collection of nexts and previouses.

Conclusion

Compilers are not easy. However, just like Programming Languages, being my first time
making a compiler, mistakes were made. (One which | spent a while on was accessing fields of
a struct. In particular the conversion from a struct member string to an index was hard because
the information was somewhere else!) My compiler performs okay, but the sprinting progress in
my opinion was surprising even for me. | am now a better assembly debugger and a better
programmer because of compilers.

