
. .
Cal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar
. .

Overview of the Course

What is an Algorithm?

Cormen, Lieserson, Rivest [1] defines the notion of an algorithm as follows:

An algorithm is any well-defined procedure that takes some
well-defined value or values as input and produces some value
or set of values as output. An algorithm is a set of steps that
transform the input into the output.

From Wikipedia1:

. . . an algorithm is an effective method for solving a problem
using a finite sequence of instructions.

(Note from Alex: this ”definition” is subject to controversy as it includes
the word ”effective” whose meaning needs to be further clarified.)

A separate Wikipedia page2 declares:

There is no generally accepted definition of algorithm. Over the
last 200 years the definition has become more complicated and
detailed as researchers have tried to pin down the term. Indeed
there may be more than one type of ”algorithm”. But most
agree that algorithm has something to do with defining gener-
alized processes for the creation of ”output” integers from other
”input” integers – ”input parameters” arbitrary and infinite in
extent, or limited in extent but still variableby the manipula-
tion of distinguishable symbols (counting numbers) with finite
collections of rules that a person can perform with paper and
pencil.

1http://en.wikipedia.org/wiki/Algorithm
2http://en.wikipedia.org/wiki/Algorithm characterizations

1

The same page quotes Andrey A. Markov’s description of an algorithm:

The following three features are characteristic of algorithms and
determine their role in mathematics:

1. the precision of the prescription, leaving no place to arbi-
trariness, and its universal comprehensibility – the definite-
ness of the algorithm;

2. the possibility of starting out with initial data, which may
vary within given limits – the generality of the algorithm;

3. the orientation of the algorithm toward obtaining some de-
sired result, which is indeed obtained in the end with proper
initial data – the conclusiveness of the algorithm.

Donald Knuth identified five properties that are accepted as requirements
for algorithms:

Finiteness. ”An algorithm must always terminate after a finite
number of steps. . . a very finite number, a reasonable number”

Definiteness. ”Each step of an algorithm must be precisely
defined; the actions to be carried out must be rigorously and
unambiguously specified for each case”

Input. ”...quantities which are given to it initially before the
algorithm begins. These inputs are taken from specified sets of
objects”

Output. ”...quantities which have a specified relation to the
inputs”

Effectiveness. ”... all of the operations to be performed in the
algorithm must be sufficiently basic that they can in principle be
done exactly and in a finite length of time by a man using paper
and pencil”

Computational Models: Turing Machines

The notion of an algorithm is often associated with a notion of a compu-
tational model, i.e. a (real or imaginary device) that is used to perform
the instructions of the algorithm to solve the specified problem.

In theoretical computer science, the main computational model is Turing
Machine: an imaginary computational device that cosists of:

• One or more infinite memory tapes;

• A Read, Write or Read/Write head associated with each tape;

• A state selected from a finite collection;

• A program that specifies actions the machine has to take given the
current state, and information observed by the Read/Read/Write heads
on the tape(s).

2

Turing Machines are:

• Imaginary. No such devices physically exist (in fact, building a Tur-
ing Machine with an infinite tape is impossible).

• Feature-poor. Turing Machine programs consist of very simple ac-
tions: moving heads one position left/right, replacing current content
on a tape with new content.

• Powerful. If a problem has an algorithms for solving it using a Turing
Machine, then an algorithms for solving the problem can be found for
other traditional computational models3, and vice versa.

• Convenient for theory. Because Turing Machines are feature-poor,
proving statements about correctness of algorithms and computabil-

ity (i.e., existance of algorithms for certain problems) is easier using
Turing Machines as the computational model.

• Inconvenient in practice. The Turing Machine model captures the
nature of a computational device, but both the ”hardware” and the
”programming language” (i.e., the language of actions) are primitive
and provide little intuition on how to actually solve problems using
real-life computational models (i.e., computers).

Computational Models: Computers

In this course we study how to design and implement efficient algorithms
that would work on the computing devices that are currently in use: com-
puters.

Our descriptions of algorithms must be:

• Easy-to-understand. You must be able to observe the description
of an algorithm and understand what actions are performed, and what
effects these actions will have.

• Easy-to-implement. You must be able to create actual programs in
existing programming languages4 in a relatively straightforward man-
ner, after having read and understood the descriptions of the algo-
rithms.

• Precise. Following Knuth, the descriptions we provide should ”leave
no place to arbitrariness”. . . .

To achieve this, we must select a computational model that is close
enough to actual computers on which algorithms will be implemented, but
not as complex as a real computer is.

Our computational model has the following features:

• A single processor. A ”processor” is a device repsonsible for per-
forming instructions.

3Except for situation when a computational model has been purposefully chosen to
restrict what computations are possible on it.

4The course uses Java as the language of choice, but the statement is true w.r.t. any
existing programming language.

3

• Infinite Random-Access Memory. The amount of memory avail-
able for any computation is not limited. Each memory cell has a
unique address and can be accessed at any time.

• High-level instruction set/programming language. All algo-
rithms are recorded in the language pseudocode instructions: a high-
level instruction set, which abstracts low-level memory manipulation
(individual cell access) and the elementary operations performed by
the processor, as well as the actual processor architecture (e.g., the
existance of registers).

• Integers-only computations. For most of the course, our algo-
rithms will operate solely on integer numbers. Thus, integers will
be the only data type accepted by our computational model, except

where explicitly specified.

Pseudocode

We use the following language of instructions, which we call pseudocode
in the rest of the course.

Constants. We only have integer constants. Most computations will
involve decimal numbers, occasionally, binary or hexadecimal numeric (in-
teger) constants will be used.

Examples: 10, -1, 34, 776, 10, 1101.

Variables. We have simple variables representing a single integer value
and array variables representing finite sequences of integer values.

Simple variable names follow traditional programming language conven-
tions: they start is a character in the Latin alphabet (’a’...’z’,’A’,...,
’Z’), followed by a finite sequence of Latin alphabet characters, digits and
underscores.

Examples: a, AB1, FooBar, D 23.

Array variable names follow the same convention, but must be followed
by an index expression: an expression (see below) identifying the range of
array indexes, or a single array index enclosed in square brackets.

Examples: a[1], B[n], X[1..N].

Simple variables need not be declared in pseudocode programs. Array
variables may be declared using a statement that specifies the name of the
array variable and the range of array indexes. For example

B[1..2];
M[1..N];

are two array declarations. The first declares an array B with two elements
indexed 1 and 2. The second declares and array M with elements indexed
1 through N. We expect that the value of N is known at the time of the
declaration.

4

Multidimensional arrays may also appear. They are declared and referred
to in a straightforward manner:

Declaration (2D array):

B[1..M][1..N];

Array element reference (2D array):

B[i][j];

Expressions. A constant (e.g. 10), a simple variable name (a) and a
variable name followed by a single index (f[3]) are all expressions. If E1 and
E2 are expressions, then the following are also expressions:

E1 + E2 (E1 + E2)
E1 - E2 (E1 - E2)
E1 * E2 (E1 * E2)
E1 / E2 (E1 / E2)
E1 mod E2 (E1 mod E2)
-E1 (-E1)

Statements. The pseudocode programs use the standard range of state-
ments: assignment, conditional statements, loops, procedure calls.

Assignment statement. We use two different symbols for the assign-
ment: ← and :=. These can be used interchangably, although, typically
we will use the same assignment symbol throughout entire algorithm. The
syntax of the assignment statement is:

VariableName := Expression;

or

VariableName ← Expression;

The effect of the assignment statement is as expected: the value of an
expression is computed and assigned to the variable VariableName.

Multiple assignments. The textbook uses the

VariableName1 ← VariableName2← . . . ←VariableNameN← Ex-

pression;

to represent:

VariableNameN ← Expression;
. . .
VariableName2 ← VariableName3;
VariableName1 ← VariableName2;

5

Boolean Expressions. Boolean expressions appear in conditional state-
ments and loops. If E1 and E2 are two expressions, then the following are
boolean expressions:

E1 =E2 (E1 = E2)
E1 < E2 (E1 < E2)
E1 > E2 (E1 > E2)
E1 ≤ E2 (or E1 <= E2) (E1 ≤ E2) (or (E1 <= E2))
E1 ≥ E2 (or E1 >= E2) (E1 ≥ E2) (or (E1 >= E2))
E1 6= E2 (or E1 ! = E2) (E1 6= E2) (or (E1 ! = E2))

If B1 and B2 are two boolean expressions, then the following are also
boolean expressions:

B1 and B2 (B1 and B2)
B1 or B2 (B1 or B2)
not B1 (not B1)

Boolean expressions are evaluated using short-circuiting.

Conditional Statements. Pseudocode has two types of conditional state-
ments: the if-then and the if-then-else statements. Indention is commonly
used to specify the scope of the if and else clauses. Alternatively endif may
be used to indicate where the scope of the clauses ends:

if BooleanExpression then
statements

endif

or

if BooleanExpression then
statements

else
statements

endif

Loops. We will use three types of loops in our pseudocode:

1. Counting loops. The for-to-do loop:

for Assignment to Expression do
statements

endfor

Here Assignment is an assignment statement which initializes the loop

counter. For loops have the increment of 1 by default. If other incre-
ments are necessary, the appropriate syntax will be introduced.

2. Loops with precondition. The while-do loop:

while BooleanExpression do
statements

endwhile

6

3. Loops with postcondition. The repeat-until loop:

repeat
statements

until BooleanExpression

Notice, that the loop will continue for as long as the BooleanExpression

evaluates to false.

Procedure/Function/Algorithm declarations. Procedure, function and
algorithm declarations in pseudocode are straightforward:

Procedure declaration:

Procedure Name ([Parameters])
begin
statements

end

Function declaration:

Function Name ([Parameters])
begin
statements

end

Procedure declaration:

Algorithm Name ([Parameters])
begin
statements

end

Here, Parameters is a list of variable names (each variable name is either
a simple variable or an array variable with array boundaries).

Functions and algorithms return values. Because pseudocode operates
with integers only, return types for functions/algorithms are not explic-
itly specified. Both individual integer values and arrays of integers can be
returned.

Return statement. Functions and algorithms return values using return
statements. The syntax is:

return Expression

Occasionally, we might use a simple return (w/o the return values) inside
procedures.

7

Procedure calls. A procedure call is simply a name of a procedure fol-
lowed by the values of all parameters in parentheses:

ProcName(ParameterValues)

Examples.:

Initialize()
FindMin(A,B,C)

Comments. Comments in pseudocode are shown using either // (single
line comment) or /* ...*/ (multiline comment) notation. The textbook
uses the � symbol, which we may use on occasion as well.

Examples. Here are some examples of comments.

// Let us start the computation
A← 0 // Initialize A
/* This is a placeholder

for the main loop */
return A � return the computed value

Variable scope. All variables have local scope within any procedure/function/algorithm.
There are no global variables.

Use of semicolumns. I tend to use semicolumns (”;”) to separate state-
ments in pseudocode. The textbook does not.

Algorithm example: Finding the largest number in an array

Computational Problem. Given a list of numbers, find and output the
largest one.

Solution Idea. Use an array to represent the list of numbers. Scan the
array and compare each number in it to the currently found maximum. If a
larger number is discovered, update the maximum.

Algorithm.

Algorithm FindMax(N, A[1..N])
begin

tmpMax← A[1];
for i ← 2 to N do
if tmpMax< A[i] then

tmpMax← A[i];
endif

endfor
return tmpMax;

end

8

Correctness: Consider two cases: N = 1 and N > 1.

N = 1. If N = 1 then the for loop won’t get executed. tmpMax will
be assigned the value of A[1], which will be returned. A[1] is the largest
element in array A.

N > 1. Consider the work of FindMax on inputs N,A[1..N], where N > 1.
Let A[k] be the largest element of A for some 1 ≤ k ≤ N . We consider two
cases:

• k = 1. In this case, tmpMax will be assigned the value of A[1] =
A[k] before the for loop starts. Because, A[k] is the largest value in
A, tmpMax is greater than or equal to any of the A[2], . . . A[N], and
therefore the comparison in the if will always be false. Therefore, at
the end of the for loop, tmpMax = A[1] = A[k].

• k > 1. Consider step k − 1 of the loop in which the current value of
tmpMax is compared to A[k]. tmpMax can take as its value either A[1]
or some A[i] for i < k (but NOT any other values). That is, any value
of tmpMax up to step k − 1 is an element of the array A. But A[k] is
the largest element in A, therefore, after step k − 1:

1. The value of tmpMax will become A[k].

2. The value of tmpMax will not change until the end of the for
loop.

Computational Complexity. We will measure the effort spent execut-
ing this algorithm in terms of number of comparisons executed during the
runtime of the algorithm.

For N > 1, the for loop gets executed N − 1 times. On each step of the
loop, the comparison in the if statement is made. Therefore, Algorithm

FindMax will always use N − 1 comparisons.

Lower bound on complexity. The problem of finding the largest el-
ement of an array has a lower bound on computational complexity in our
computational model (number of comparisons):

Any algorithm computing the largest number in an array of N

numbers must use at least N − 1 comparisons.

Proof. Consider an algorithm that solves the problem of finding the largest
element of an array of size N which uses K comparisons. Consider a graph
whose nodes are elements of the array and whose (directed) edges are pairs
of elements that were compared by the algorithm during a specific run. The
arrow goes from the smaller to the greater element. The graph will contain

K edges. If K < N − 1, then the graph will not be connected.

Divide-and-conquer version of FindMax. Various algorithmic prob-
lems accept multiple solutions: sometimes, even multiple ”optimal” solu-
tions. Algorithm FindMax described above, can be considered greedy:
on each step a locally largest number is determined.

Another possibile approach is the divide-and-conquer technique, which
breaks the solution of a problem into the solution of one or more problems of

9

the same type on smaller inputs. The classical divide-and-conquer algorithm
for finding the maximum in an array works as follows:

1. Divide your input array into two parts as equally as possible.

2. Find the maximum element in each of two parts.

3. Compare the two maximum elements.

This gives rise to the following recursive algorithm:

Algorithm FindMaxRecursive(I,J, A[I..J])
begin

if I = J then return A[I]; //base case

max1← FindMaxRecursive(I, I+(J-I)/2, A);
max2← FindMaxRecursive(1+I+(J-I)/2,J, A);
if max1>max2 then return max1
else return max2;

end

Note. To understand how FindMaxRecursive works, imagine a tournament
played between a number of teams. Each time two teams play a game, one
team advances. Eventually, two teams reach the final, and one team wins. If
we replace teams with numbers, and ”winning a game” with ”being greater
than”, then we get the FindMaxRecursive algorithm.

References

[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms,
MIT Press, 1990, 1st Edition.

10

