tal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar'

Greedy Algorithms: Activity Selection

Algorithms for Optimizing Activity Selection

Note: In this algorithm we assume that all activities in the input array are
stored in ascending order of the activity’s end time. If this is not the case,
the algorithms can be modified in one of two ways:

e sort all activities in ascending order of the activity’s end time, then
call the algorithm.

e call, on each step, a function that finds, among the remaining ac-
tivities the one that ends at the earliest time.

Iterative Algorithm

ALGORITHM ActivitySelection(N, A[1..N][1..2])

begin
S[0..NJ; //initialize output array
currentEndTime «— —1; //initialize current end time counter
1 —1;

while i < N do
//check to see if current activity can be scheduled
if A[i][1] > currentEndTime then
Sli] « 1; //select it
S[0] « S[0] + 1; //update scheduled activity count
currentEndTime«— A[i][2]; //update current end time marker
endif
i—1+1;
endwhile
return S[0..N];
end

Recursive Algorithm

Note: The ActivitySelectionRecursive() algorithm adds a pair of input param-
eters. One, K, is the current index in the array A[][] of activities. The other,
StartTime is the earliest possible start time for the activities at the current
moment. The initial call to this algorithm will set K = 1 and StartTime= 0.

Note: Again, this algorithm works only for arrays A that are sorted in
ascending order by their second component.

ALGORITHM ActivitySelectionRecursive(N, A[K..N][1..2],K, StartTime)
// K is the "current" index in the array of activities.
//StartTime is the earliest allowed start time

begin

decision « 1; //A[K] will be selected

StartTime— A[K][2]; //establish new start time

else
decision + 0; //A[K] will NOT be selected

endif

if K = N then //base case: reached the end of activity list
S[0..NJ;
S[0] =decision; //set number of selected activities
S|N] =decision; //set activity selection flag
return S[0..N];

else //recursion step
S[0..NJ;
S10..N] «—ActivitySelectionRecursive(N,A[K+1,N][1..2],K+1,Start Time);
S[K] = decision; //set activity selection flag
S[0] = S[0]+decision; // update number of selected activities
return S[0..N];

end

if A[K][1]>StartTime then //determine if A[K] can be scheduled

