Alexander Dekhtyar

Dynamic Programming

Chain Matrix Multiplication

Problem. Given N matrices $A_1, \ldots A_N$ with dimensions $A_1[m_1, m_2], A_2[m_2, m_3], \ldots A_N[m_N, m_{N+1}],$ find the **fully parenthesized** product of A_1, \ldots, A_N with the lowest computation cost.

Cost of matrix product. Given two matrices A[m, n] and B[n, k], their product $C[m, k] = A \times B$ is computed as follows:

$$C_{ij} = \sum_{t=1}^{n} A_{it} \cdot B_{tj}.$$

It takes n multiplications¹ to compute one element of the product matrix.

There are $m \cdot k$ elements in the product matrix.

The cost of matrix product is represented in terms of **number of multiplication operations.** These operations are more expensive than other operations used in the computation.

The cost of a product of two matrices is $cost(A \times B) = m \cdot n \cdot k$.

Total Number of Parenthizations.

A naïve algorithm for solving Chain Matrix Multiplication problem is shown in Figure 1.

This algorithm is *efficient* if the total number of parenthizations is small (bounded by a polynomial).

¹This assumes the direct way of computing a product of two matrices. A more computationally efficient algorithm exists, but it is not usually used in practice.

```
Algorithm CMM_Naive(N, A[1..N+1])

begin

for each parenthization X of N matrices do

compute Cost(X)

endfor

return X with the smallest Cost(X)

end
```

Figure 1: Naïve algorithm for solving the Chain Matrix Multiplication problem.

Computing the total number of parenthizations. Let P(n) be the number of possible parenthizations of n matrices. We observe:

- P(1) = 1.
- A complete parenthization of n matrices splits the matrices at some point between kth and k+1st matrices of the input. There are n-1 possible splits: (between A_1 and A_2 ; between A_2 and A_3, \ldots , between A_{n-1} and A_n . Each of the two split parts is, in turn **a complete parenthization**.
- The total number of parenthizations of the form

$$(A_1 \times \ldots \times A_k) \times (A_{k+1} \times \ldots \times A_n)$$
 is $P(k) \cdot P(n-k)$.

• The total number of parenthizations of a product of n matrices (for n > 1) is then

$$P(n) = \sum_{k=1}^{n} n - 1P(k) \cdot P(n-k).$$

- The solution to this recurrence equation is $\Omega(2^n)$.
- This means, that the *naïve algorithm* in not applicable in practice.

Dynamic Programming Algorithm for Chain Matrix Multiplication

Solution Idea. For each subsequence $A_i \dots A_j$ of matrices find the best possible parenthization.

We can do it efficiently in a bottom-up fashion because:

Optimal substructure property. Optimal substructure property is present in this problem.

If $(A_1 \times ... \times A_k) \times (A_{k+1} \times ... \times A_N)$ is an optimal solution for $A_1 \times ... \times A_N$, then the parenthizations of $A_1 \times ... \times A_k$ and $A_{k+1} \times ... \times A_N$ must be optimal (otherwise, we can use optimal parenthizations to get a better cost estimate)

Overlapping subproblems. A lot of subproblems will overlap. E.g., $A_i \times ... A_j$ and $A_{i+1} \times ... \times A_{j+1}$ both share the subproblem for $A_{i+1} \times ... \times A_j$.

```
ALGORITHM MatrixChain(N, A[1..N+1])
// A[1..N+1] is an array of matrix dimensions
begin
  m[1..N][1..N];
  s[1..N][1..N];
  // Initialize the diagonal of m
  for i \leftarrow 1 to N
   m[i,i] \leftarrow 0;
  endfor for l \leftarrow 2 to N do //l is length of chain
  for i \leftarrow 1 to n - l + 1
   //i is start of chain
   j \leftarrow i + l - 1;
                     //j is end of chain
   m[i,j] = -\infty;
    for k \leftarrow i to j-1
     // update the score in m[i,j]
     q \leftarrow m[i,k] + m[k+1,j] + A[i] * A[k] * A[j]
     if q < m[i,j] then
    m[i,j] = q;
     s[i,j] = k;
    endif
  endfor
  return m and s;
```

Figure 2: Algorithm MatrixChain for solving the Matrix Chain Multiplication problem.

Data Structures. Our algorithm will maintain two data structures:

- 1. array m[1..N, 1..N]: m[i, j] stores the information about the cheapest cost of multiplying the sequence A_i, \ldots, A_j .
 - In the algorithm, only the *top* portion of this array is used (i.e., only for $i \leq j$)
- 2. array s[1..N, 1..N], which allows us to construct the optimal solution. s[i,j] = k for i < j means that the optimal solution of subproblem $A_i \times ... \times A_j$ splits the sequence at matrix A_k :

$$(A_i \times \ldots \times A_k) \times (A_{k+1} \times \ldots \times A_j)$$

Note, that s will be defined only for i < j and that $i \le s[i, j] < j$.

The bottom-up dynamic programming algorithm is shown in Figure 2.