
. .
Cal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar
. .

Dynamic Programming

Chain Matrix Multiplication

Problem. Given N matrices A1, . . . AN with dimensions A1[m1,m2], A2[m2,m3], . . . AN [mN ,mN+1],
find the fully parenthesized product of A1, . . . , AN with the lowest com-
putation cost.

Cost of matrix product. Given two matrices A[m,n] and B[n, k], their
product C[m,k] = A×B is computed as follows:

Cij =
n∑

t=1

Ait ·Btj .

It takes n multiplications1 to compute one element of the product matrix.

There are m · k elements in the product matrix.

The cost of matrix product is represented in terms of number of mul-

tiplication operations. These operations are more expensive than other
operations used in the computation.

The cost of a product of two matrices is cost(A×B) = m · n · k.

Total Number of Parenthizations.

A näıve algorithm for solving Chain Matrix Multiplication problem is shown
in Figure 1.

This algorithm is efficient if the total number of parenthizations is small
(bounded by a polynomial).

1This assumes the direct way of computing a product of two matrices. A more com-

putationally efficient algorithm exists, but it is not usually used in practice.

1



Algorithm CMM Naive(N, A[1..N+1])
begin

for each parenthization X of N matrices do

compute Cost(X)
endfor

return X with the smallest Cost(X)
end

Figure 1: Näıve algorithm for solving the Chain Matrix Multiplication prob-
lem.

Computing the total number of parenthizations. Let P (n) be the
number of possible parenthizations of n matrices. We observe:

• P (1) = 1.

• A complete parenthization of n matrices splits the matrices at some
point between kth and k + 1st matrices of the input. There are n− 1
possible splits: (between A1 and A2; between A2 and A3, . . . , between
An−1 and An. Each of the two split parts is, in turn a complete

parenthization.

• The total number of parenthizations of the form

(A1 × . . .×Ak)× (Ak+1 × . . .×An)

is P (k) · P (n− k).

• The total number of parenthizations of a product of n matrices (for
n > 1) is then

P (n) =
∑

k=1

n− 1P (k) · P (n− k).

• The solution to this recurrence equation is Ω(2n).

• This means, that the näıve algorithm in not applicable in practice.

Dynamic Programming Algorithm for Chain Matrix Multi-

plication

Solution Idea. For each subsequence Ai . . . Aj of matrices find the best
possible parenthization.

We can do it efficiently in a bottom-up fashion because:

Optimal substructure property. Optimal substructure property is present
in this problem.

If (A1×. . .×Ak)×(Ak+1×. . .×AN ) is an optimal solution for A1×. . .×AN ,
then the parenthizations of A1×. . .×Ak and Ak+1×. . .×AN must be optimal
(otherwise, we can use optimal parenthizations to get a better cost estimate)

Overlapping subproblems. A lot of subproblems will overlap. E.g.,
Ai×. . . Aj and Ai+1×. . .×Aj+1 both share the subproblem for Ai+1×. . .×Aj.

2



Algorithm MatrixChain(N, A[1..N+1])
// A[1..N+1] is an array of matrix dimensions

begin

m[1..N ][1..N ];
s[1..N ][1..N ];
// Initialize the diagonal of m

for i← 1 to N

m[i, i]← 0;
endfor for l← 2 to N do //l is length of chain

for i← 1 to n− l + 1
//i is start of chain

j ← i + l − 1; //j is end of chain

m[i, j] = −∞;
for k ← i to j − 1
// update the score in m[i,j]

q ← m[i, k] + m[k + 1, j] + A[i] ∗ A[k] ∗A[j]
if q < m[i, j] then

m[i,j] = q;
s[i, j] = k;

endif

endfor

return m and s;
end

Figure 2: Algorithm MatrixChain for solving the Matrix Chain Multiplica-
tion problem.

Data Structures. Our algorithm will maintain two data structures:

1. array m[1..N, 1..N ]: m[i, j] stores the information about the cheapest
cost of multiplying the sequence Ai, . . . , Aj .

In the algorithm, only the top portion of this array is used (i.e., only
for i ≤ j)

2. array s[1..N, 1..N ], which allows us to construct the optimal solution.

s[i, j] = k for i < j means that the optimal solution of subproblem
Ai × . . .×Aj splits the sequence at matrix Ak:

(Ai × . . .×Ak)× (Ak+1 × . . .×Aj)

Note, that s will be defined only for i < j and that i ≤ s[i, j] < j.

The bottom-up dynamic programming algorithm is shown in Figure 2.

3


