tal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar'

Dynamic Programming

Chain Matrix Multiplication

Problem. Given N matrices Ay, ... Ay with dimensions Aj[mq, ma], Az[ma, ms], ..

find the fully parenthesized product of Ay,..., Ay with the lowest com-
putation cost.

Cost of matrix product. Given two matrices A[m,n| and B[n, k|, their
product C[m, k] = A x B is computed as follows:

n
Cij = _ Aw- By
=1

It takes n multiplications' to compute one element of the product matrix.
There are m - k elements in the product matrix.

The cost of matrix product is represented in terms of number of mul-
tiplication operations. These operations are more expensive than other
operations used in the computation.

The cost of a product of two matrices is cost(A x B) =m -n - k.

Total Number of Parenthizations.

A naive algorithm for solving Chain Matrix Multiplication problem is shown
in Figure 1.

This algorithm is efficient if the total number of parenthizations is small
(bounded by a polynomial).

1This assumes the direct way of computing a product of two matrices. A more com-
putationally efficient algorithm exists, but it is not usually used in practice.

. AN[mN7 mNJrl]a

Algorithm CMM Naive(N, A[1..N+1])
begin
for each parenthization X of N matrices do
compute Cost(X)
endfor
return X with the smallest Cost(X)
end

Figure 1: Naive algorithm for solving the Chain Matrix Multiplication prob-
lem.

Computing the total number of parenthizations. Let P(n) be the
number of possible parenthizations of n matrices. We observe:

e P(1)=1.

e A complete parenthization of n matrices splits the matrices at some
point between kth and k 4 1st matrices of the input. There are n — 1

possible splits: (between A; and Ag; between Ag and As, ..., between
A,—1 and A,. Each of the two split parts is, in turn a complete
parenthization.

e The total number of parenthizations of the form
(A x ... X Ag) X (Agg1 X ... X Ayp)
is P(k)- P(n — k).

e The total number of parenthizations of a product of n matrices (for
n > 1) is then

P(n)=> n—1P(k)-P(n — k).
k=1

e The solution to this recurrence equation is Q(2").

e This means, that the naive algorithm in not applicable in practice.

Dynamic Programming Algorithm for Chain Matrix Multi-
plication

Solution Idea. For each subsequence A;...A; of matrices find the best
possible parenthization.

We can do it efficiently in a bottom-up fashion because:

Optimal substructure property. Optimal substructure property is present
in this problem.

If (A;x. . . X A) X (Ag41 X. .. X Ay) is an optimal solution for Ay x...x Ay,
then the parenthizations of Ay x...x Ap and Agy1Xx...xX Ay must be optimal
(otherwise, we can use optimal parenthizations to get a better cost estimate)

Overlapping subproblems. A lot of subproblems will overlap. E.g.,
Ajx...Ajand A;11x...xAj4q both share the subproblem for A;11x...xA;.

ALGORITHM MatrixChain(N, A[1..N+1])
// A[1..N+1] is an array of matrix dimensions

begin
m[l..N][1..N];
s[1..N][1..N7;

// Initialize the diagonal of m
fori—1to N
mli,i] < 0;
endfor for/«—2to N do //1 is length of chain
fori—1ton—1+1
//i is start of chain
je—i+1l—1; //j is end of chain
m[zvj] = =00
for k—itoj—1
// update the score in ml[i,j]
g — mli, K] +mlk+ 1,7] + Ali] « Alk] x Alj]
if ¢ < mli,j] then

m[i,j] = q;
S[ivj] = k;
endif
endfor
return m and s;

end

Figure 2: ALGORITHM MatrixChain for solving the Matrix Chain Multiplica-
tion problem.

Data Structures. Our algorithm will maintain two data structures:

1. array m[1..N,1..N]: mli, j] stores the information about the cheapest
cost of multiplying the sequence A;, ..., A;.

In the algorithm, only the top portion of this array is used (i.e., only
for i < j)

2. array s[1..N, 1..N], which allows us to construct the optimal solution.

s[i,j] = k for i < j means that the optimal solution of subproblem
A; x ... x Aj splits the sequence at matrix Ay:

(Ai x ..o X Ag) X (Aggr X ... x Aj)

Note, that s will be defined only for i < j and that ¢ < sz, j] < j.

The bottom-up dynamic programming algorithm is shown in Figure 2.

