
. .
Cal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar
. .

Solving Recurrences

Recurrences

Estimations of the time complexity of recursive algorithms are usually done
using recurrencies: equations representing the time complexity of a problem
of size n via the time complexity of smaller problems.

Examples. All of the following are recurrencies:

T (n) = 2T (n − 1) + 4

T (n) = 3T (
n

2
) + log2(n)

T (n) = 2T (
n

2
)

T (n) = 4T (n − 6) + 2n log2(n)

The general form of a recurrence we will consider is

T (n) = a · T (
n

b
− d) + f(n)

Such a recurrence describes the time complexity of a recursive divide-and-
conquer algorithm which:

• Reduces the problem of size n to finding answers to a subproblems. . .

• . . . each of which has the size n

b
− d . . .

• . . . and takes f(n) time to assemble the solution of the problem of size
n from the a computed solutions.

1



Solving Recurrences: Master Method

The master method is applicable to the recurrences of the form

T (n) = a · T (
n

b
) + f(n)

It is derived from the following statement, called the Master theorem:

Theorem. Lab a and b be two constants, f(n) be an asymptotically pos-
itive function. Let T (n) be defined as:

T (n) = a · T (
n

b
) + f(n)

Then:

1. If f(n) = O(nlogb(a−ǫ)) for some ǫ > 0, then T (n) = Θ(nlogb(a)).

2. If f(n) = Θ(nlogb(a)), then T (n) = Θ(nlogb(a) log2(n)).

3. If f(n) = Ω(nlog
b
(a+ǫ)) for some ǫ > 0, and af(n

b
) ≤ cf(n) for some

c < 1 for all n > n0, then T (n) = Θ(f(n)).

Note. Essentially, the master theorem checks whether f(n) grows faster,
slower or the same as nlogb(a), and chooses the asymptotically faster of the
two functions as the solution. If they grow in a similar way, then log2(n) is
added to the solution.

In the recurrence:

• f(n) controls the amount of time an algorithm spends on each recur-
sive step. If f(n) is sufficiently fast-growing, it starts dominating the
computation.

• nlogb(a) controls the thime it takes to process the pure recursion. It is
based on the number of subproblems to be solved on each step (rep-
resented by a) and the ”shrinkage” factor of each subproblem (rep-
resented by b). If this function is asymptotically faster growing than
f(n), it means that processing recursion starts dominating the running
time of the algorithm.

Example 1. T (n) = 2T (n/2) + 5.

Here: a = 2, b = 2, f(n) = 5 and f(n) = O(1) = O(nlog
2
(2)−ǫ) = o(n).

Therefore,

T (n) = Θ(n) = nlog
2
(2).

Example 2. T (n) = 8T (n/2) + n3.

a = 8, b = 2, logb(a) = log2(8) = 3, f(n) = n3;
f(n) = n3 = Θ(nlogb(a)) = Θ(n3). Therefore,

T (n) = Θ(n2 log2(n)).

2



Example 3. T (n) = 2T (n/2) + n2.

a = 2; b = 2; logb(a) = 1, f(n) = n2; f(n) = Ω(n) and
af(n/b) = 2(n/2)2 = 0.5n2 ≤ 0.5f(n). Therefore,

T (n) = Θ(n2).

Example 4. T (n) = 2(n/2) + n log2(n).

Here, a = 1, b = 1, logb(a) = 1; f(n) = n log2(n).

We know that f(n) = Θ(n), however, for any ǫ > 0, f(n) 6= Θ(nǫ).

Therefore, neither of the cases of the master theorem is applicable.

Exercise 4.6.-2 of the textbook provides the bound for this case:

• if f(n) = Θ(nlogb(a) logk

2 n), k ≤ 0, then

T (n) = Θ(nlogb(a) logk+1(n).

This gives the solution of the recurrence in Example 4 as

T (n) = Θ(n log2
2(n)).

Other Cases

Some recurrences cannot be solved using master theorem.

Example 5. T (n) = 2T (n − 1) + 2.

Here, we have T (n − d) on the right side of the recurrence, rather than
T (n/b).

You can use (cautiously) a guess-and-check or substitution method for
such equations.

1. Step 1. Gueass the form of the solution.

2. Step 2. Substitute and check.

(note, technically, this is a proof by induction. By guessing T (n) =
O(f(n)), we make an inductive assumption that for all m < n, we have
already established T (m) = O(f(m)). We would also need to establish the
base cases, but those, typically, are straighforward.)

Let us guess that T (n) ≤ c(2n − 1). We assume that we have already
shown for n − 1 that T (n − 1) ≤ c(2n−1 − 1). Then,

T (n) = 2T (n−1)+2 ≤ 2c(2n−1−1)+2 = c2n−2c+2 = c2n−2(c−1) ≤ c2n.

(notice that setting T (n) ≤ c2n would not have worked, as we’d get T (n) ≤
c2n + 2, which is not what we needed to prove).

3


