
. .
Cal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar
. .

Divide-and-Conquer: Finding The Median

Selection Problems

Selection problem. A selection problem is the problem of given an array
of n numbers finding the ith largest (or smallest) number in the array.

Finding the largest, the smallest, the second largest number in an array
are all instances of a selection problem.

If i is constant, then TSelect(i)(n) = O(n), in fact, we can find the ith
element in less than i · n comparisons.1

Finding Median

Problem. Finding a median. Given an array of n elements, find its me-
dian.

This problem can be reduced to solving one or two selection problems.
Indeed, if n is odd, then finding a median is a selection problem with i =
⌊n/2⌋+1. Ifr n is even, then finding a median can be reduced to two selection
problems for values i = n/2 and i = n/2 + 1.

Näıve Algorithm. Using our traditional approach to selection, finding a
median median will yield an algorithm with T (n) = O(n2).

Sort-based Algorithm. A simple improvement over the näıve algorithm
is a sort-based algorithm:

• Sort input array A using any O(n log(n)) algorithm.

• Return A[n2] if n is odd, or
A[n

2
]+A[n

2
+1]

2 if n is even.

1We actually know that tighter bounds exist, since the second largest element can be
found using n − 1 + log2(n) − 1 comparisons.

1

This algorithm has the complexity O(n log(n)).

Linear Algorithm. Can we do better?

We discuss the general SELECT(A[1..n], n, i algorithm, which uses divide-
and-conquer strategy to find ith smallest element in the array. If we can
build a linear selection algorithm, the linear algorithm for median will follow.

Idea #1. Pick an element x from the array. Compare all other elements to
it, and split the array into two parts: one that contains all numbers smaller
than x, and the other, containing all elements greater than or equal to x.
Determine, in which of the two subarrays, the ith smallest element will lie.
Recursively find this element in the subarray.

Problem with Idea # 1. We can pick x which is really bad for us.
(e.g., looking for a median, we pick x with is the largest element in the
array).

Idea #2. We would like to run Idea #1, but with a guarantee, that the
pivot number x we pick is not too bad. I.e., we want a guarantee, that at
least a certain number of array elements will be on either side of x. We also
would like to establish this we reasonably few comparison operations.

We can do this using the following algorithm:

1. Divide input array A into n/5 groups of 5 elements in each (the last
group can have fewer elements).

2. Find the median of each group of 5 elements using insertion-sort and
then taking the third element. Let b1, . . . bk, where k = n/5 be the list
of medians.

3. Recursively find the median of b1, . . . , bk. Let c be the median. of
b1, . . . , bk.

4. Partition input array A around c. Let d1, . . . dm be all elements of
A that are less than c, and e1, . . . , et are all elements of A that are
greater than or equal to c. m + t = n.

5. If m ≥ i, then the ith smallest element is the low partition. Call
SELECT((d1, . . . , dm),m, i).

6. If m < i, then, the ith element of A is the i − mth element of the
upper partition. Call SELECT(e1, . . . , et), t, i − m).

Algorithm Analysis. We need to show that SELECT(A,n,i) has linear
running time. We will look at the number of comparisons that SELECT
makes.

Step 1. How many elements are guaranteed to be in each partition.
(a.k.a., there was a reason we chose the median of medians).

How many elements are guaranteed to be greater than c? c is greater than
1
2 · n

2 − 1 other group medians. This means that in those groups, at least 3

2

elements are greater than c (except for the last group, which may contain
fewer than 5 elements). This means that we have at least

3

(

⌈
1

2
⌈
n

5
⌉⌉ − 2

)

=
3n

10
− 6

array elements that are greater than c. Similarly, 3n

10 − 6 elements are less
than c.

Step 2. The largest possible size of a partition (either lower or upper) is

n −

(

3n

10
− 6

)

=
7n

10
+ 6

elements.

Step 3. On Step 3 of the algorithm we make a recursive call to SELECT
with the input array size of n/5.

On Steps 5/6 of the algorithm we will make one recursive call to SELECT
with the input array of size at most 7n

10 + 6.

Steps 1,2 and 4 take O(n) time.

Our recurrence is thus:

T (n) = T
(

⌈
n

5
⌉
)

+ T

(

7n

10
+ 6

)

+ O(n)

We also assume that T (n) = O(1) for n ≤ 140.

To solve this recurrence, assume T (n) ≤ cn for some c > 0 and n ≤ 140.
(given that T (n) = O(1) for n ≤ 140, this will be true for large enough c).

Also, let a > 0 be such that the O(n) term is the recurrence is bound by
an, i.e., let

T (n) ≤ T
(

⌈n

5 ⌉
)

+ T
(

7n

10 + 6
)

+ an

Then

T (n) ≤ c⌈
n

5
⌉ + c

(

7n

10
+ 6

)

+ an

≤
cn

5
+ c +

7cn

10
+ 6c + an

=
9cn

10
+ 7c + an

= cn +
(

−
cn

10
+ 7c + an

)

If − cn

10 + 7c + an ≤ 0, then T (n) ≤ cn.

Because n > 140, n

n−70 ≤ 2. In this case, for c ≤ 20a,

− cn

10 + 7c + an ≤ 0

3

