tal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar'

Algorithms on Graphs: Part Il

Minimal Spanning Trees

Spanning Tree. Let G = (V, E,w) be a (connected) edge-weighted undi-
rected graph. A spanning tree of G is a subset T" C FE of edges, such that
Gr = (V,T) is connected and acyclic.

The weight of a spanning tree: w(T') = }_(, , e w(U; V).

Example. An example of a spanning tree is shown in Figure 1. The
weight of the tree is 17.

Minimal Spanning Tree Problem. Given an undirected edge-weighted
graph, find a spanning tree with minimum weight.

Greedy approach. (if we can make it work).

Idea: Manage a set A of edges such that:

Prior to each iteration A is a subset of some minimum spanning
tree.

Figure 1: A spanning tree of a graph.

Figure 2: A ({c,e, f,9,7},{a,b,d, h})-cut in the graph. Crossing edges are
in bold. The light edges crossing the cut are in solid bold.

On each step, add to A an edge that is a part of the same minimum
spanning tree. (We call such edges safe).

A generic greedy algorithm exploiting this idea looks as follows:

ArLcorIiTHM GENERIC_MST(V,Adj,w)
begin
A — 0
while A is not a spanning tree do
find a safe edge(u,v) € E to include in A
A=AU{(u,v}
endwhile
return A;
end

How to find a safe edge?

Cuts. A cut (S,V —S5) in an undirected graph G = (V| E) is a partition
of V into two sets.

An edge (u,v) crosses the cut if u € S and v € V — S or vice versa.
A cut respects a set A of edges is no edge in A crosses the cut.

An edge (u,v) is a light edge crossing the cut is its weight is the minimum
among all edges crossing the cut.

Example. Figure 2 shows an example of a cut in the graph from Figure
1. Bold edges cross the cut. Three crossing edges, (e, h), (g,d) and (c,a)
have weight of 1. These edges (marked as solid bold lines) are the light edges
crossing the cut. Other crossing edges are dashed on the figure.

If A= {(gv f)v (f)])v (Cv 6)}, then the {(Ca 6, f)g)j)a (a) ba d> h)}'CUt de-
picted in Figure 2 respects A (as none of the edges from A cross the cut).

Theorem 3. Let G = (E,V,w) be a connected undirected edge-weighted
graph. Let A C E be in some minimal spanning tree. and let (S,V — S) be
some cut of G.

If (S,V —5) respects A and (u,v) is a light edge crossing A, then (u,v)
is safe for A.

Proof. Ilustrated in Figure 3. Consider a minimum spanning tree T’

V-5

wl <=w2

Figure 3: Proving Theorem 3.

that contains A, but does not contain the edge (u,v). If we add (u,v) to
T, the resulting graph will have a cycle, as there will now be two distinct
paths between u and v (as depicted on Figure 3. Because u and v belong
to different partitions, there is at least one edge on the other path from u
to v in T that crosses the (S,V — S)-cut. It is marked on the Figure as the

(z,y) edge.
We know that w(u,v) = wl < w2 = w(z,y) (as (x,y) is the light edge
crossing the (S,V — S)-cut).

Consider now the graph 7" =T — {(x,y)} U {(u,v)}. We note that:

e T’ is a spanning tree. ((z,y) was on the unique path from u to v, and
(S,V — S) respects A, so (x,y) & A.) T' is acyclic.

o W(T") =W(T) — w(z,y) +w(u,v) < W(T).

From this, we conclude that 7" is the minimum spanning tree.

Kruskal’s Algorithm

Greedy Strategy. On each step pick the edge with the smallest weight,
that keeps the set of selected edges a tree.

Implementation. Our algorithm needs to ensure two things:

e Fast selection of an edge with the smallest weight on each step of the
process.

— This achieved in a brute-force way: we sort all edges in the input
graph by their weight.

e Fast determination, if an edge can be a part of the spanning tree.

— (u,v) is not a part of the spanning tree if u is already connected
to v.

— Check this using the disjoint set ADT. Algorithm will keep track
of all disjoint connected components. On each step, checks if u
and v are in the same set. If yes, skip, otherwise, add and edge,
and unite the two sets.

The algorithm is formalized below.

ALGORITHM MST_KRUSKAL(V,Adj,w)
begin
A — 0
foreach v € V do MakeSet(v);
E — sort Adj in ascending order by w(e),e € Adj;
foreach (u,v) € FE do //retrieved in ascending order
if FindSet(u) #FindSet(v) then
A=AU{(u,v}
Union(u,v)
endif
endfor
return A;
end

Correctness. Follows from Theorem 3.

Running Time.

T(MST_KRUSKAL) = |V|T(MakeSet)+|E|log, (| E|)+|E| (2T (FindSet) + T'(Union))+O(1).

This, generally speaking depends on the implementation of the disjoint set
ADT. Good implementations of this ADT take on the order of O(logy(|E|)) =
O(logs(|V|) running time (|E| = O(|]V|?), hence, logy(E) = O(logy(V)).
This, in turn leads to

T((MST_KRUSKAL) = O(|E|log,(|V])).

Note. For dense graphs, this is generally quadratic in the number of
nodes.

Prim’s Algorithm

Kruskal's Algorithm builds a forest of trees, and on each step combines a pair
of trees using the least expensive edge.

In constrast, Prim's algorithm maintains a single tree and on each step

attaches one more node to it.

Greedy Idea. Construct the minimum spanning tree incrementally start-
ing from some arbitrarily chosen node in the graph. On each step, nodes
in the tree and nodes outside form the (S,V — S) cut. Adding a light edge
crossing the cut will connect one more node to the tree.

Implementation. Our algorithm needs to efficiently perform the follow-
ing operations.

e Given a set S of nodes, determine all edges that cross the (S,V —5)
cut.

e Given a set of edges, find the edge with the smallest weight.

Both objectives are achieved using a priority queue structure to store all
nodes in V that have not (yet) made it into the tree S. At the beginning
all but one node will be in the priority queue. At the end, the queue will
become empty.

The key on which the nodes are stored in the priority queue is the

smallest weight of an edge connecting the given node to any
already selected node.

The minimum spanning tree is kept implicitly in the 7[v] array, which, for
each node v stores the pointer to its “parent” node in the spanning tree.

Input. Prim’s algorithm takes as input the graph G = (V, E,w) and the
root node r € V| which will be used to ”"grow” the MST.

The pseudocode for the algorithm is shown below.

ALGORITHM MST_PRIM(V,Adj,w,r)
begin
foreach v € V do // initialization step
keylv] « oo;
m[v] < NIL;
endfor
key[r] < 0;
Queue — V; // insert all nodes in the priority queue
while Queue # () do // main loop: retrieve nodes from priority queue
u «— ExtractMin(Queue);
foreach v € Adj[u] do // adjust distances
if v € Queue and w(u,v) < key[v] then
key[v] — w(u,v);
7o) — w(u);
endif
endfor
endwhile
end

Correctness. Follows directly from Theorem 3.

Computational Complexity.

1. Initialization loop takes O(|V|) time.
2. Queue initialization is actually a loop:
foreach v € V' do Insert(Queue, v);

T(Insert) depends on priority queue implementation. For priority
queues implemented as binary min-heaps, Insert takes O(logy(|V|) time,
and hence, the entire initialization will take (|V'|logy(|V]) time.

3. The body of the while loop is executed |[V| times. ExtractMin for
binary min-heaps takes logy(|V]) time.

4. The nested for loop will execute O(|E|) times over all iterations of the
while loop. The v € Queue test can be done in constant time (by
using flags for each node v).

- - f = =
a
b - - 9 - -
—+co o "7 T
d - -
e = - Queue
—»{a1 ¢) F 7 7
b - - 9 - -
h__
d - - .
e3 ¢ | Queue
¢ - -
bg a 9 — -~
h__
d7 a .
re3 o) Quee

Figure 4: Running Prim’s algorithm: Steps 1-3.

The key reassignment, however, triggers the DecreaseKey procedure
on the priority queue. For binary min-heaps DecreaseKey runs in

O(logy(IV1))-

This means that the while loop has the running time

O(|V[logy (V) + | E[logs([V])-

From the observations above:

T(MST_PRIM) = O([V])+0O(|V[log,(IV)+O(|V [logs([V])+|Ellog2(|V])) =

O(|E[logy([V'])-

Example. Figures 4, 5 and 6 show the run of Prim’s algorithm on the
graph from Figure 1 starting with node ¢ as root. On each step, the graph
has the following legend:

e Nodes removed from the queue are shaded.

e Edges ”included” (via m[v] relationship that will not change) into the
minimum spanning tree are in bold.

Figure 5: Running Prim’s algorithm: Steps 4-7.

b 4
h1el=—
d 7 o
] Queue
fo- -
b 4 9 - -
d 7
j 2 Queue
b 4 9 8 |
d 7
Queue
b 4 g 2f)~—"
d 4

Queue

Figure 6: Running Prim’s algorithm: Steps 8-10.

b4 e
~d1l g
Queue
Queue
Queue

e Edges used to establish current distances in the priority queue are
dashed.

The priority queue structure (rendered as an array) is shown for each step
as well. In each row, the name of the node is first, followed by the current
smallest edge weight to the spanning tree, followed by the current ”parent”
of the node. Node with the smallest edge weight (to be removed on the next
step) is highlighted.

