
. .
Cal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar
. .

Algorithms on Graphs: Part III

Shortest Path Problems

Path in a graph. Let G = 〈V,E〉 be a graph. A path p = e1, . . . , ek, ei ∈
E, ei = (ui, vi) is a sequence of edges, such that v1 = u2, v2 = u3, . . . , vk−1 =
uk.

Shortest Path. Consider a directed edge-weighted graph G = 〈V,E,w〉.
Let p = e1, . . . , ek be a path in G. The weight of the path,

w(p) = w(e1) + . . . + w(ek).

The shortest path weight for a pair (u, v) of edges is defined as:

δ(u, v) =∞, if there is no path from u to v;

δ(u, v) = min(w(p)): p connects u to v.

A shortest path between u and v is any path p between them, such that
w(p) = δ(u, v).

Variants of the Shortest Path Problem.

Single-source shortest path problem. Given a graph G and a vertex
v ∈ V , find the shortest path from v to every other node in the graph.

Single-destination shortest path problem. Given a graph G and a
vertex v ∈ V , find the shortest path to v from every other node in the graph.

Single-pair shortest path problem. Given a graph G and a pair u and
v of nodes, find the shorest path between them.

1

1

a b

c

d

e
4

3

−94

Figure 1: Effect of negative cycles in the graph on shortest paths.

All-pairs shortest paths problem. Given a graph G, find a shorest
path for and pair u, v of nodes in V .

Single-source Shortest Path Problem

Single-source Shorthest Path problem provides an immediate solution
to the single-destination shortest path problem.

Additionally, no known algorithm for single-pair shortest path prob-

lem can perform with a better worst-case complexity than the single-source
shortest path problem.

Negative Cycles. Shortest paths in a graph do not exist if a graph
contains a negative-weight cycle.

Figure ?? shows an example of a graph with a negative cycle.

Here, the (b, c), (c, d), (d, b) cycle has a negative weight of -2.

This means that the weight of the (a, b), (b, c), (c, e) path from a to e is go-
ing to be smaller than the weight of the (a, b), (b, c), (c, d), (d, b), (b, c), (c, e).
This can be continued.

Negative edge weights are OK if they do not lead to a negative cycle.

Bellman-Ford Algorithm. Solves single-source shortest path problem for
any input (edges can have negative weights).

Dijkstra’s Algorithm. Solves single-source shortest path problem for graphs
with no negative weights.

Preliminaries

Cycle Elimination. Shortest paths need not contain cycles.

• Negative edge cycles. Negative edge cycles lead to no shortest paths.

• Positive edge cycles. These cycles add non-trivial value to the path
weight. When excluded, the weight of the path decreases.

• 0-weight edge cycles. These can be excluded from the paths without
changing the weight of the path.

2

Path representation. We represent single-source shortest paths using
two arrays d[V] and π[V].

d[v] stores the value of the currently known shortest path weight. for the
paths from the source node s to node v.

π[v] stores the ”parent” of v in the shortest path from s to v.

Initialization. All single-source shortest path algorithms will be initial-
ized in the same way:

• d[v] is set to ∞ for all v 6= s; d[s] is set to 0.

• π[v] is set to NIL for all nodes.

The pseudocode of this procedure is:

Procedure INITIALIZE SINGLE SOURCE(V,E,w, s)
begin

foreach v ∈ V do

d[v]←∞;
π[v]← NIL;

endfor

d[s]← 0;
end

Relaxation. Consider some state of the single-source shortest path com-
putation, defined by a pair of arrays π[V] and d[V]. Consider some edge
(u, v), that has not been considered yet.

Two cases are possible:

• d[u] + w(u, v) < d[v].

In this case, the currently known best path from s to u followed by

(u, v) is shorter, than the previously discovered shortest path from s to

v. The d and π arrays need to be updated.

• [u] + w(u, v) ≥ d[v].

In this case, the best known path from s to u followed by (u, v) is not

better than the best known path from s to v that avoids (u, v). No
changes to the arrays is necessary.

The relaxation step is the procedure that, given an edge in the graph,
checks the two conditions above, and if the first condition is true, updates
the d and π arrays.

The pseudocode is shown below.

Procedure RELAX(u, v,w)
begin

if d[u] + w(u, v) < d[v] then

d[v]← d[u] + w(u, v);
π[v]← u;

endif

end

3

Properties of relaxation. These properties will allow us to formally
prove correctness of our single-source shortest path algorithms.

Triangle inequality: For any edge (u, v) ∈ E,

δ(s, v) ≤ δ(s, u) + w(u, v).

Upper-bound property. It is always the case that

v[d] ≥ δ(s, v)

No-path property: If s and v are not connected then

δ(s, v) = d[v] =∞.

Convergence property: If s ⇒ u → v is the shortest path from s to v,
and if d[u] = δ(s, u) at some point in the computation, than after the

relaxation RELAX(u, v,w), d[v] = δ(s, v) from then on.

Path-relaxation property: If p = s, v1, . . . , vk is the shortest path from s

to vk, and the edges of p are relaxed in order (s, v1), (v1, v2), . . . (vk−1, vk),
then d[vk] = δ(s, v) after all these relaxations.

Predecessor-subgraph property: Once d[v] = δ(s, v) for all v ∈ V , π[V]
is the predecessor subgraph for all shortest paths from s to all other
nodes.

(Note: these properties require prrof, before we can use them to prove
correctness.)

The Bellman-Ford Algorithm

Applicability. The Bellman-Ford Algorithm is applicable to all directed
edge-weighted graphs. If a graph has a negative cycle, then the algroithm will
fail and exit. Otherwise, the algorithm will compute the shortest distance
from the source to every node in the graph.

Idea. Exploit the path relaxation property. We would love to know
the order of vertices on every shortest path from s to other nodes v, so
that we coud relax the appropriate edges in a row. This, however is not
possible right away. But if we relax every single edge multiple times, then
the ”correct” order of vertices will be present across multiple passes.

Pseudocode. The input to the algorithm Bellman Ford as shown below:

• G = 〈V,E,w〉 is the input edge-weighted graph.

• s is the source node.

4

Algorithm Bellman Ford(V,E,w, s)
begin

d[1..|V |];
π[1..|V |];
INITIALIZE SINGLE SOURCE(V,E,w,s);
for i← 1 to |V | − 1 do

foreach (u, v) ∈ E do

RELAX(u,v,w);
endfor;

endfor

foreach (u, v) ∈ E do

if d[v] > d[u] + w(u, v) then //Check for negative weight cycle

return FALSE;
endif

endfor

return TRUE
// Array d[.] will contain shortest distances

// Array π[.] will contain shortest shortest path info

end

Correctness. Correctness is proven as follows.

Lemma. Let G = 〈V,E,w〉 be an edge-weighted directed graph, and let
s ∈ V be a source node. Then, if G has no negative-weight cycles, then after
|V | − 1 iterations of the nested loop of Bellman Ford,

for each node v ∈ V reachable from s, d[v] = δ(s, v).

Proof. Let v ∈ V be reachable from s, and let p = s, v1, . . . , vk−1, v be
some shortest path from s to v.

Shortest paths are simple (recall that we eliminated al cycles from them).
Therefore p has at most |V | − 1 edges.

On iteration i of Bellman Ford algorithm we relax every single edge, include
the edge (vi−1, vi) from the path p.

Then, by path relaxation property, d[v] = δ(s, v).

Complexity. The running time of the Bellmain Ford algorithm is domi-
nated by the double nested loop. The outer loop repeats |V |−1, i.e. Θ(|V |)
times. On each outer loop iteration, the inner loop goes through all the
edges, i.e., repeats Θ(|E|) times. Thus,

T (|V |, |E|) = O(|V ||E|)

Dijkstra’s Algorithm

Applicability. This algorithm only works on graphs G = 〈V,E,w〉 where
(∀e ∈ E)w(e) ≥ 0.

Idea. If there are no need to worry about negative weight cycles (or, in
fact, about negative edges), then we do not have to examine each edge on

5

each iteration. If we start at the source node, we are guaranteed that one of
its outgoing links (the shortest) will be a shortest path to some other node.
This gives us an idea for a greedy approach: on each step, maintain

• The set S of nodes for which shortest paths have already been estab-
lished.

• The shortest paths to all other nodes only through nodes in S.

Then, on each step, we pick the node with shortest path through nodes
in S, add it to S. Once it is in S, its outgoing edges may become parts of
the shortest paths from s to other nodes (not yet in S), so we relax each
outgoing edge.

Pseudocode. This algorithm takes the following inputs.

The input to the algorithm DIJKSTRA as shown below:

• G = 〈V,E,w〉 is the input edge-weighted graph.

• s is the source node.

Algorithm DIJKSTRA(V,E,w, s)
begin

d[1..|V |];
π[1..|V |];
INITIALIZE SINGLE SOURCE(V,E,w,s);
S ← ∅; //Initialize Set of Completed Nodes

Queue← V ; //Initialize Priority Queue

while Queue 6= ∅ do

u← EXTRACT MIN(Queue);
S ← S ∪ {u};
foreach (u, v) ∈ E do

RELAX(u,v,w);
endfor

endwhile

// Array d[.] will contain shortest distances

// Array π[.] will contain shortest shortest path info

end

The algorithm maintains a priority queue Queue to store the set of for
which shortest paths have not yet been discovered and a set S of nodes for
which the shortest paths have been discovered. Queue uses the values of
d[.] as the priority keys, and retrieves the nodes with the smallest value of
d[.]. RELAX(...) adjusts the values of d[.]. This means that a number of
DECREASE KEY operations implicitly happen in Queue.

Correctness. Shown as follows.

Theorem. Dijkstra’s algorithm, run on a directed, edge-weighted graph
G = 〈V,E,w〉 with non-negative weight function w and source s terminates
with d[v] = δ(s, v) for all v ∈ V .

Proof. We prove the theorem by showing that our greedy choice property
works:

6

at the start of each while loop iteration d[v] = δ(s, v) for all
v ∈ S.

Step 1. Iteration 0: S = ∅, therefore our loop invariant is true.

Step 2. Iteration k > 0. Proof by contradiction. Assume that on some
iteration k > 0, a node u is added to S, but d[u] > δ(s, u). Let u be the first

such node.

Observation 1: u 6= s. s is extracted from Queue on iteration 1, because
at this point d[v] =∞ for all nodes but s, and d[s] = 0. It is also true that
d[s] = δ(s, s). Since u 6= s, u has been retrieved on an iteration k > 1.

Observation 2: When u is added to S, S 6= ∅, and therefore, v[u] 6=∞, i.e.,
there exists a path from s to u. (if this is NOT the case, v[u] =∞ = δ(s, u),
as the shortest path from s to an unreachable node is ∞).

Consider the shortest path p from s to u and consider the first time p

crosses from S to V − S. Let y be the first node in V − S, p crosses into
and let the incoming edge on the path be (x, y) (x ∈ S).

The path p can be decomposed as p : s⇒ x→ y ⇒ u.

Observation 3: When u is added to S, d[y] = δ(s, y). Because x ∈ S,
we know (by induction/loop invariant) that d[x] = δ(s, x). Because (x, y) is
relaxed when x is added to S, but convergence property, δ(s, y) = d[y].

Observation 4: Contradiction:

d[y] = δ(s, y) ≤ δ(s, u) ≤ d[u].

BUT, u is chosen on step k from the priority queue, which implies that
d[u] ≤ d[y]. From here, it must be the case that

d[y] = δ(s, y) = δ(s, u) = d[u].

This contradicts our assumption that d[u] 6= δ(s, u) when u is included
in S.

Complexity. Dijkstra’s algorithm maintains a priority queue, so its com-
putational complexity depends on the implementation of the queue. The
following priority queue operations are used in the algorithm (implicitly,
due to the powers of pseudocode, or explicitly):

• INSERT() is called implicitly |V | times in the Queue← V line.

• FIND MIN() is called explicitly once on each iteration. There are |V |
iterations of the while loop.

• DECREASE KEY() is called implicitly from RELAX() any time and
edge needs to be relaxed. This can be as often as |E|, i.e., in the worst
case, DECREASE KEY() is called Θ(|E|) times.

Priority Queue T(INSERT()) T(FIND MIN()) T(DECREASE KEY()) T(DIJKSTRA)
Array O(1) O(|V |) O(1) O(|V |2 + |E|)
Binary heap O(log

2
(|V |) O(log

2
(|V |) O(log

2
(|V |) O(|V | log

2
(|V |) + |E| log

2
(V))

Fibonacci heap O(1) O(log
2
(|V |) O(1) O(|V | log

2
(|V |) + |E|)

7

