CSC 349 Algorithm Design and Analysis Alex Dekhtyar.

Longest Common Subsequence

Longest Common Subsequence

Subsequence. Given a string S = s153 ... Sy, a subsequence of S is any string
P =p;...pk, such that:

1. Forall 1 <i <k, p; = s; for some j > 0;

2. If p; is s; and p;41 is s;, then [ > j.

Informally, a subsequence P of string S can be obtained by removing zero or
more characters from S and preserving the order of the characters not removed.

Example. Let S = ATCATTCGC. Then, ATC, AAT, ATATG and CCCG
are all subsequences of S, while AAA, ATTA and CCT are not.

Longest Common Subsequence (LCS) Problem. The Longest Common
Subsequence (LCS) problem is specified as follows: given two strings S and T,
find the longest string P which is a substring for both S and T'.

Brute-Force Solution.

A naive algorithm for solving LCS is:

1. Enumerate all possible subsequences of S.
2. For each subsequence of S check if it is also a subsequence of T'.

3. Keep track of the longest common subsequence found and its length.

Analysis. A string S = s1...s, has 2" possible subsequences (each subse-
quence is essentially a choice of which characters are in and which characters are
out). Some of these subsequences are not unique, but in a brute-force algorithm,
there is no way to know that ahead of time. Checking if a string T' = t; ... ¢,
contains a subsequence P = p;...p; can be done in O(m + k) = O(m) (if
k > m, the answer is an automatic "no”) time. Thus, the overall complexity of
the brute-force algorithm is O(m2™).



Characterization of a Longest Common Subsequence

To help us develop an efficient algorithm for LCS, we need to be able to un-
derstand what a longest common subsequence of two sequences looks like. The
following theorem provides the key idea for an efficient algorithm:

Theorem. Let S = s;...s, and T = t;...t, be two strings and let P =
p1-..pg be their longest common subsequence. Then:

1. if s, = t,,,, then p; ... pr_1 is the longest common subsequence of s1 ... 8,1
and tl .. .tmfl;

2. if s, # t,, and pi # s,, then P is the longest common subsequence of
S$1...8,—1 and T

3. if s, # t,, and py # t,,, then P is the longest common subsequence of
Sand t1...t,_1.

Given S=s1...spand T =t1 ...ty let c[i,j] (for 1 <i<nand1<j<m)
represent the length of the maximal longest subsequence of s1...s; and ¢;...¢;.
For the sake of consistency we set ¢[0,0] = 0.

The theorem suggests the following approach to determining the length of the
LCS of S and T

e Build the matrix c[, j] from ¢[0, 0] all the way to c[n, m]. ¢[n, m]
will contain the length of the LCS of S and T

e Make sure that the construction of the matrix allows for a fast
determination of the actual LCS.

Building the matrix c[i,j]. Using the theorem above, we can derive the
following about c[z, j:

o if s; =1t then cfi,jl=cli—1,j— 1]+ 1.

If the two last characters of the substrings agree, then the LCS extends
to include this character.

o if 5, # t; then c[i, j] = max(c[i,j — 1], c[i — 1, j]).
Essentially, if the last characters of the substring differ, then the LCS of

51...8;and ¢ ...t; is also the LCS of one of the two strings and the other
string without the last character.

We represent this formally as the following recurrence relation:

0 ifi=j=0;
cli,j] = fi—1,j—1]+1 if4,5 > 08 = 13
max(c[i,j —1],¢[j,i —1])  if 4,5 > 0;8; # t;

Essentially, c[i, j] can be determined if we know the values in the following
cells: c[i—1,75—1], c[i,j—1] and c[i — 1, j]. We can set ¢[0, j] = 0 and ¢[i, 0] = 0
forall 1 < j < m and 1 < ¢ < n. This makes it possible to compute ¢[1, 1],
which, in turn, makes it possible to compute c[1, 2] and ¢[2, 1], and so on.



”Remembering” the LCS. On each step (4, j) of computation of c[i, j], we
can determine which of the three cells c[i — 1,5 — 1] (diagonally above and to
the left), c[i,j — 1] (to the left) or ¢[i — 1,j] (above) is the one whose value is
used in computing ¢t j].

We create a table u[i,j]. In cell s[i,j] we store the ”pointer” to the cell
from which c[i, j] was constructed. We use symbols <, T and \ to denote the
following cases:

ult,j] Symbol | s; vs. t; | Table condition
\ S; = tj N/A
7 si £t cli—1,5] > ¢cli,j —1]
— si £t cli,j—1] > ¢cli —1,7]

Proposition. There is a path from s[n, m] to s[0,0]. The LCSof S =s7...s,
and T =ty ... tm, given a constructed matrix u[i, j] can be found by combining
all s; characters for all locations [i, j], where u[i, j] =\

Dynamic Programming Algorithm for LCS

To find the LCS of two strings, we need to construct the two matrices: cli, j]
and s[i, j]. The following iterative version of the algorithm can do it.

Algorithm LCS(S =s1...8,, T =1t1...tm)
begin

declare ¢[0..n,0..m];

declare u[0..n, 0..m];

for : =0ton do

cli, 0] :=0;

end for

for j =1tomdo
[0, 4] :=0;

end for

for i =1tondo
for j =1tomdo
if S; = tj then
cli,jli=cli—1,5 —1]+1;
u[lvj] =N
else
if cli—1,7] >¢[i,j—1] then
C[Z'aj] = C[i - 17j]§
U’[Zaj] =T;
else
C[Z'aj] = C[Z"j - 1]?
ult, j| :=+;
end if
end if
end for
end for
LCSLength:= c[n, m];
LCS:= LCSRecover(S, T', u[]);
return (LCS, LCSLength);
end




The algorithm LCSRecover takes as input two strings, S and T' and the
matrix u[t, j| that encodes how c[i, j] was filled, and returns back the LCS of
S and T'. The algorithm works as follows (in the algorithm below, + on string
values is a concatenation operation).

Algorithm LCSREcover(S = s1...8,, T =t1...t,, u[0..n,0..m])

begin
P =77
1:=n;
J =y
P:=s5,+P;

while i >0 and 57 >0 do
if wli,j] =" then
P :=s;+ P;
1:=1—1;
ji=i— 1
else
if ufi, j] =— then
Ji=J-1L
else // uli,jl =1
1:=1—1;
end if
end if
end while
return P;
end

Analysis. Algorithm LCS contains a double nested loop that iterates n - m
times. Each loop iteration completes in O(1).

On each step of the main loop of the algorithm LCSRecover either i or j gets
decreased (and on some steps, both i and j are decreased). This means that the
main loop of LCSRecover runs no more than m + n times, and the algorithm
itself has O(m + n) runtime complexity.

As a result, algorithm LCS has O(nm) + O(n + m) = O(nm) runtime com-
plexity.

Tt actually needs only one string, since it returns the common sequence.



