
. .
CSC 349 Algorithm Design and Analysis Alex Dekhtyar
. .

Longest Common Subsequence

Longest Common Subsequence

Subsequence. Given a string S = s1s2 . . . sn, a subsequence of S is any string
P = p1 . . . pk, such that:

1. For all 1 ≤ i ≤ k, pi = sj for some j > 0;

2. If pi is sj and pi+1 is sl, then l > j.

Informally, a subsequence P of string S can be obtained by removing zero or
more characters from S and preserving the order of the characters not removed.

Example. Let S = ATCATTCGC. Then, ATC, AAT , ATATG and CCCG

are all subsequences of S, while AAA, ATTA and CCT are not.

Longest Common Subsequence (LCS) Problem. The Longest Common

Subsequence (LCS) problem is specified as follows: given two strings S and T ,
find the longest string P which is a substring for both S and T .

Brute-Force Solution.

A näıve algorithm for solving LCS is:

1. Enumerate all possible subsequences of S.

2. For each subsequence of S check if it is also a subsequence of T .

3. Keep track of the longest common subsequence found and its length.

Analysis. A string S = s1 . . . sn has 2n possible subsequences (each subse-
quence is essentially a choice of which characters are in and which characters are
out). Some of these subsequences are not unique, but in a brute-force algorithm,
there is no way to know that ahead of time. Checking if a string T = t1 . . . tm
contains a subsequence P = p1 . . . pk can be done in O(m + k) = O(m) (if
k > m, the answer is an automatic ”no”) time. Thus, the overall complexity of
the brute-force algorithm is O(m2n).

1



Characterization of a Longest Common Subsequence

To help us develop an efficient algorithm for LCS, we need to be able to un-
derstand what a longest common subsequence of two sequences looks like. The
following theorem provides the key idea for an efficient algorithm:

Theorem. Let S = s1 . . . sn and T = t1 . . . tm be two strings and let P =
p1 . . . pk be their longest common subsequence. Then:

1. if sn = tm, then p1 . . . pk−1 is the longest common subsequence of s1 . . . sn−1

and t1 . . . tm−1;

2. if sn 6= tm and pk 6= sn, then P is the longest common subsequence of
s1 . . . sn−1 and T .

3. if sn 6= tm and pk 6= tm, then P is the longest common subsequence of
S and t1 . . . tm−1.

Given S = s1 . . . sn and T = t1 . . . tm, let c[i, j] (for 1 ≤ i ≤ n and 1 ≤ j ≤ m)
represent the length of the maximal longest subsequence of s1 . . . si and t1 . . . tj .
For the sake of consistency we set c[0, 0] = 0.

The theorem suggests the following approach to determining the length of the
LCS of S and T :

• Build the matrix c[i, j] from c[0, 0] all the way to c[n, m]. c[n, m]
will contain the length of the LCS of S and T .

• Make sure that the construction of the matrix allows for a fast

determination of the actual LCS.

Building the matrix c[i, j]. Using the theorem above, we can derive the
following about c[i, j]:

• if si = tj then c[i, j] = c[i− 1, j − 1] + 1.

If the two last characters of the substrings agree, then the LCS extends
to include this character.

• if si 6= tj then c[i, j] = max(c[i, j − 1], c[i− 1, j]).

Essentially, if the last characters of the substring differ, then the LCS of
s1 . . . si and t1 . . . tj is also the LCS of one of the two strings and the other
string without the last character.

We represent this formally as the following recurrence relation:

c[i, j] =







0 if i = j = 0;
c[i− 1, j − 1] + 1 if i, j > 0; si = tj ;

max(c[i, j − 1], c[j, i− 1]) if i, j > 0; si 6= tj

Essentially, c[i, j] can be determined if we know the values in the following
cells: c[i−1, j−1], c[i, j−1] and c[i−1, j]. We can set c[0, j] = 0 and c[i, 0] = 0
for all 1 ≤ j ≤ m and 1 ≤ i ≤ n. This makes it possible to compute c[1, 1],
which, in turn, makes it possible to compute c[1, 2] and c[2, 1], and so on.

2



”Remembering” the LCS. On each step (i, j) of computation of c[i, j], we
can determine which of the three cells c[i − 1, j − 1] (diagonally above and to
the left), c[i, j − 1] (to the left) or c[i − 1, j] (above) is the one whose value is
used in computing c[i, j].

We create a table u[i, j]. In cell s[i, j] we store the ”pointer” to the cell
from which c[i, j] was constructed. We use symbols ←, ↑ and տ to denote the
following cases:

u[i, j] Symbol si vs. tj Table condition

տ si = tj N/A
↑ si 6= tj c[i− 1, j] ≥ c[i, j − 1]
← si 6= tj c[i, j − 1] > c[i− 1, j]

Proposition. There is a path from s[n, m] to s[0, 0]. The LCS of S = s1 . . . sn

and T = t1 . . . tm, given a constructed matrix u[i, j] can be found by combining
all si characters for all locations [i, j], where u[i, j] =տ.

Dynamic Programming Algorithm for LCS

To find the LCS of two strings, we need to construct the two matrices: c[i, j]
and s[i, j]. The following iterative version of the algorithm can do it.

Algorithm LCS(S = s1 . . . sn, T = t1 . . . tm)
begin

declare c[0..n, 0..m];
declare u[0..n, 0..m];
for i = 0 to n do
c[i, 0] := 0;

end for
for j = 1 to m do
c[0, j] := 0;

end for
for i = 1 to n do
for j = 1 to m do
if si = tj then

c[i, j] := c[i− 1, j − 1] + 1;
u[i, j] :=տ;

else
if c[i− 1, j] ≥ c[i, j − 1] then
c[i, j] := c[i− 1, j];
u[i, j] :=↑;

else
c[i, j] := c[i, j − 1];
u[i, j] :=←;

end if
end if

end for
end for
LCSLength:= c[n, m];
LCS:= LCSRecover(S, T , u[]);
return (LCS, LCSLength);

end

3



The algorithm LCSRecover takes as input two strings, S and T 1 and the
matrix u[i, j] that encodes how c[i, j] was filled, and returns back the LCS of
S and T . The algorithm works as follows (in the algorithm below, + on string
values is a concatenation operation).

Algorithm LCSREcover(S = s1 . . . sn, T = t1 . . . tn, u[0..n, 0..m])
begin

P := ””;
i := n;
j := m;
P := si + P ;
while i > 0 and j > 0 do
if u[i, j] =տ then
P := si + P ;
i := i− 1;
j := j − 1;

else
if u[i, j] =← then

j := j − 1;
else // u[i,j] = ↑

i := i− 1;
end if

end if
end while
return P ;

end

Analysis. Algorithm LCS contains a double nested loop that iterates n · m

times. Each loop iteration completes in O(1).

On each step of the main loop of the algorithm LCSRecover either i or j gets
decreased (and on some steps, both i and j are decreased). This means that the
main loop of LCSRecover runs no more than m + n times, and the algorithm
itself has O(m + n) runtime complexity.

As a result, algorithm LCS has O(nm) + O(n + m) = O(nm) runtime com-
plexity.

1It actually needs only one string, since it returns the common sequence.

4


