
. .
CSC 349 Algorithm Design and Analysis Alexander Dekhtyar
. .

Edit (Levenstein) Distance. . .

Edit Distance

Edit Distance. Given two strings S = s1 . . . sn and T = t1 . . . tm, the edit

distance between S and T is defined as the smallest number of atomic edit

operations necessary to transform S into T . The atomic edit operations are

• Character insertion. An insertion of a single character from the alphabet
into any position in the string.

• Character deletion. A removal of any character from the string.

• Character replacement. A replacement of any character in the string with
another character from the alphabet.

Example. Given a word "cat", the following words have an edit distance of
1 from it:

• "at", obtained from "cat" by deleting its first character:

cat

X||

_at

• "cast", obtained from "cat" by inserting a character "s" into the third

position of the string:

ca_t

||X|

cast

• "vat", obtained from "cat" by replacing the first character with "v":

1

cat

X||

vat

Computing the Edit Distance. We want to develop a dynamic programming

algorithm for computing the edit distance. In preparation for this, we will
consider using a data structure similar to the one we used when solving the LCS

problem.

Let c[i, j] be the edit distance between the prefixes Si = s1 . . . si and Tj =
t1 . . . tj of the strings S and T . Our algorithm will construct the table c[i, j].
When completed, c[n, m] will contain the edit distance between S and T .

The construction of c[i, j] is guided by the following observations:

• c[0, 0] = 0. For the sake of consistency, S0 and T0 are empty strings. The
edit distance between two empty strings is 0.

• c[0, j] = j for all 1 ≤ j ≤ m. The edit distance between an empty string
and any non-empty string of length j is j: the string can be constructed
via j consecutive insertions.

• c[i, 0] = i: see above (the empty string is constructed from s1 . . . si via i

consecutive deletions).

• If si = tj , then c[i, j] = c[i − 1, j − 1]. If the last characters of the two
prefixes coincide, then the edit distance between them is the same as the
edit distance between the prefixes without the last characters.

• If si 6= tj , then an atomic edit is needed to match the last characters of
the strings Si and Tj . We must select one of the three possible atomic
edits (insertion, deletion, or replacement). When selecting which one to
use, we basically are reducing computing the edit distance between Si and
Tj to:

1. computing the edit distance between Si−1 and Tj−1 if replacement is
chosen.

2. computing the edit distance between Si−1 and Tj if deletion is chosen.

3. computing the edit distance between Si and Tj−1 if insertion is cho-
sen.

These insights can be properly encoded as follows:

c[i, j] =

0 if i = j = 0
i if j = 0
j if i = 0

c[i − 1, j − 1] if i, j ≥ 1 and si = tj
min(c[i − 1, j − 1], c[i − 1, j], c[i, j − 1]) + 1 if i, j ≥ 1 and si 6= tj

Algorithm for Edit Distance Computation

Using the formula derived above, we can write the following algorithm for com-
puting the table c[i, j]. The algorithm returns c[n, m], which contains the edit
distance between the input strings S and T .

2

Algorithm EditDistance(S = s1 . . . sn, T = t1 . . . tm)
begin

declare c[0..n, 0..m];
for i = 0 to n do

c[i, 0] := 0;
end for

for j = 1 to m do

c[0, j] := 0;
end for

for i = 1 to n do

for j = 1 to m do

if si = tj then

c[i, j] := c[i − 1, j − 1];
else

c[i, j] := min(c[i − 1, j], c[i, j − 1], c[i − 1, j − 1]) + 1;
end if

end for

end for

return c[n, m];
end

Analysis. The double nested loop executes n · m times. Each iteration runs
in O(1). Therefore, the algorithmic complexity of the EditDistance algorithm is
O(nm).

3

