Edit (Levenstein) Distance...

Edit Distance

Edit Distance. Given two strings $S=s_{1} \ldots s_{n}$ and $T=t_{1} \ldots t_{m}$, the edit distance between S and T is defined as the smallest number of atomic edit operations necessary to transform S into T. The atomic edit operations are

- Character insertion. An insertion of a single character from the alphabet into any position in the string.
- Character deletion. A removal of any character from the string.
- Character replacement. A replacement of any character in the string with another character from the alphabet.

Example. Given a word "cat", the following words have an edit distance of 1 from it:

- "at", obtained from "cat" by deleting its first character:

$$
\begin{aligned}
& \text { cat } \\
& \text { X|| } \\
& \text { _at }
\end{aligned}
$$

- "cast", obtained from "cat" by inserting a character "s" into the third position of the string:
ca_t
| |X|
cast
- "vat", obtained from "cat" by replacing the first character with "v":

Computing the Edit Distance. We want to develop a dynamic programming algorithm for computing the edit distance. In preparation for this, we will consider using a data structure similar to the one we used when solving the LCS problem.
Let $c[i, j]$ be the edit distance between the prefixes $S_{i}=s_{1} \ldots s_{i}$ and $T_{j}=$ $t_{1} \ldots t_{j}$ of the strings S and T. Our algorithm will construct the table $c[i, j]$. When completed, $c[n, m]$ will contain the edit distance between S and T.
The construction of $c[i, j]$ is guided by the following observations:

- $c[0,0]=0$. For the sake of consistency, S_{0} and T_{0} are empty strings. The edit distance between two empty strings is 0 .
- $c[0, j]=j$ for all $1 \leq j \leq m$. The edit distance between an empty string and any non-empty string of length j is j : the string can be constructed via j consecutive insertions.
- $c[i, 0]=i$: see above (the empty string is constructed from $s_{1} \ldots s_{i}$ via i consecutive deletions).
- If $s_{i}=t_{j}$, then $c[i, j]=c[i-1, j-1]$. If the last characters of the two prefixes coincide, then the edit distance between them is the same as the edit distance between the prefixes without the last characters.
- If $s_{i} \neq t_{j}$, then an atomic edit is needed to match the last characters of the strings S_{i} and T_{j}. We must select one of the three possible atomic edits (insertion, deletion, or replacement). When selecting which one to use, we basically are reducing computing the edit distance between S_{i} and T_{j} to:

1. computing the edit distance between S_{i-1} and T_{j-1} if replacement is chosen.
2. computing the edit distance between S_{i-1} and T_{j} if deletion is chosen.
3. computing the edit distance between S_{i} and T_{j-1} if insertion is chosen.

These insights can be properly encoded as follows:

$$
c[i, j]=\left\{\begin{aligned}
& 0 \text { if } i=j=0 \\
& \text { if } j=0 \\
& \text { if } i=0 \\
& j \text { if } i, j \geq 1 \text { and } s_{i}=t_{j} \\
& c[i-1, j-1] \text { if } i, j \geq 1 \text { and } s_{i} \neq t_{j}
\end{aligned}\right.
$$

Algorithm for Edit Distance Computation

Using the formula derived above, we can write the following algorithm for computing the table $c[i, j]$. The algorithm returns $c[n, m]$, which contains the edit distance between the input strings S and T.

```
Algorithm EditDistance \(\left(S=s_{1} \ldots s_{n}, T=t_{1} \ldots t_{m}\right)\)
begin
    declare \(c[0 . . n, 0 . . m]\);
    for \(i=0\) to \(n\) do
        \(c[i, 0]:=0 ;\)
    end for
    for \(j=1\) to \(m\) do
        \(c[0, j]:=0 ;\)
    end for
    for \(i=1\) to \(n\) do
        for \(j=1\) to \(m\) do
            if \(s_{i}=t_{j}\) then
                \(c[i, j]:=c[i-1, j-1] ;\)
            else
                \(c[i, j]:=\min (c[i-1, j], c[i, j-1], c[i-1, j-1])+1 ;\)
            end if
        end for
    end for
    return \(c[n, m]\);
end
```

Analysis. The double nested loop executes $n \cdot m$ times. Each iteration runs in $O(1)$. Therefore, the algorithmic complexity of the EditDistance algorithm is $O(n m)$.

