
. .

Cal Poly CPE/CSC 366: Database Modeling, Design and Implementation Alexander Dekhtyar
. .

Theory of Normal Forms
Decomposition of Relations

Overview

• Functional Dependencies capture the attribute dependencies within a rela-
tional table.

• Functional Dependencies that do not involve full keys lead to anomalies :
problems with management/maintenance of tables.

• Normal Forms are restrictions on functional dependencies in relational ta-
bles.

• Third Normal Form (3NF) and Boyce-Codd Normal Form (BCNF eliminate
from relational tables FDs that do not involve full keys1.

• If a table in a database schema violates 3NF, often it is best to replace
it with a collection of tables in 3NF. This is achieved via the procedure
called decomposition of relations.

Relational table decomposition: replacement of a relational table R(A1, . . . , An)
with relational tables R1, R2, . . . , Rk. We want relational decomopositions to
have the following properties:

P1. For all i, Ri = πL(R), where L ⊂ {A1, . . . , An}.

P2. R1 ⊲⊳ R2 ⊲⊳ . . . Rk = R.

Decompositions are designed to address the following issues:

• Eliination of anomalies. Property P1 usually takes care of that.

• Recoverability of information. This is achieved by decompositions satisfying
property P2.

• Preservation of dependencies. This is an important challenge. It may affect
how far towards normalization we can get.

1Remember, in case of 3NF, it is possible to have an FD involving an incomplete key, but

the right side of such FD hase to be a prime attribute.

1



Algorithms for Functional Dependencies

In order to present the algorithm for decomposing any relation into a relational
schema in 3NF, we first need two algorithms involving functional dependencies:

• Closure: given a list of attributes and a set of FDs find all attributes that
depend on it.

• FDs in Projection: given a relation, a collection of FDs and a list of at-
trbiutes, find the FDs that hold in the projection of the relation on the
given attribute list.

Closure

Closure of a set of attributes. Let R be a relation, and Q = {A1, . . . , An}
be a subset of R’s attributes. The closure of Q, denoted Q+ is a set of attributes,
which are functionally determined by Q, given a set S of functional dependencies
on R.

FD Closure algorithm. The following algorithm computes the closure of a
set of attributes.

Algorithm FD-Closure(R Relational_Schema, Q Set_of_Attributes, S Set_of_FDs)

returns Set_of_Attributes;

// Step 1. split all rules in S

for each f in S

begin

if (right side of f has multiple attributes)

then replace f in S with FDs that have only on attribute on the right;

end;

// Step 2. Include set Q in the closure

X := Q;

// Step 3. Keep including new attributes for as long as FDs allow

repeat

X’ := X;

for each f: B1,...,Bn -> C in S

begin

if {B1,...,Bn} is a subset of X

then X := X union {C};

end;

until (X’ == X); // repeat until no new attributes can be added to X

return X;

2



Finding Functional Dependencies in Projection

Algorithm FD-Project(R Relational_Schema, R1 Relational_Schema,

L Set_of_Attributes, S Set_of_FDs)

returns Set_of_Attributes;

// R: original relation

// R1: projection of R onto attributes L

// S : FDs asserted on R

// initialization

T := {}; // T is a set of functional dependencies

// main loop

for each subset X of L

begin

Y := FD-Closure(R, X, S); // for each subset of L, find its closure

for each A in Y-X

if A in L then T := T Union {X -> A};

end; // for

return T;

Note: FD-Project checks every subset of the input set of attributes. This
means, that in general case, FD-Project is exponential in the size of input. How-
ever, in practice, if the list of FDs is short, this algorithm will work faster.

Decomposition of Relations

BCNF Decomposition

The BCNF Decomposition algorithm, given a relation and a collection of
FDs asserted on it, decomposes the relation into a number of relational tables
in BCNF.

3



Algorithm BCNF-Decompose(R Relational_Schema, S Set_of_FDs)

returns Set_of_Relational_Schema;

if R is in BCNF then return {R}; // trivial case

Z:= all attributes of R;

W := {}; // initialize eventual result

// main case: R is not in BCNF, needs to be decomposed

Find rule X-> A in S which violates BCNF;

Y1 := FD-Closure(R,X); // closure of left side of violating rule

Create relational schema T1(Y1);

S1 := FD-Project(R,T1,Y1,S); // find FDs in the new table

Y2 := (T - Y) Union X;

Create relational schema T2(Y2);

S2 := FD-Project(R,T2,Y2,S); // find FDs in the new table

// recursively call BCN-Decomposition algorithm

W := W Union BCNF-Decompose(T1,S1) Union BCNF-Decompose(T2,S2);

return W;

Note: BCNF-Decompose is a recursive algorithm. The idea is simple: find
a rule that violates BCNF, use it to decompose the table into two. Then, find
the proper set of FDs for each of the new tables, and decompose each of them
in turn.

Properties of BCNF Decomposition

• Elimination of anomalies. Anomalies are eliminated, since the decomposi-
tion process breaks off any BCNF-violating FD into a separate table.

• Recoverability of information. Natural join will recover the original rela-
tion from the decomposition. Chase test allows us to verify that.

• Preservation of dependencies. This is not always the case. If a table was in
3NF but not in BCNF, some dependencies may be lost.

3NF Decomposition

BCNF Decomposition may lead to breaking off of FDs X → A where A is a prime
attribute, i.e., part of another key. This, in turn, may yield loss of dependency:
it would be possible to store information in the set of decomposed tables, which
cannot be stored in the original table.

3NF decomposition shall be used when such FDs are present in a table, instead
of BCNF decomposition. While 3NF tables are not as normalized, they are

guaranteed to always preserve all dependencies from the original table.

Basis and Minimal Basis of FD Sets

FD Basis. Let R be a table and S be a set of FDs asserted on it. Let S′ be
another set of FDs, such that S ≡ S′. Then S′ is called the basis of S.

4



Minimal Basis. A minimal basis for a set of FDs S is a set of FDs S′, such
that:

1. S′ is a basis of S.

2. All FDs in S′ are of the form X → A, where A is a single attribute.

3. For any X → A ∈ S′, S′ − {X → A} is not a basis of S.

4. For any X → A ∈ S′, Y ⊂ X , S′ − {X → A} ∪ {Y → A} is not a basis of
S.

Note: Informally, a minimal basis, is a basis which has only rules with one
attribute on the right, and from which no rule can be removed, or simplified.

Algorithm 3NF-Decompose(R Relational_Schema, S Set_of_FDs)

returns Set_of_Relational_Schema;

if R is in 3NF then return {R}; // trivial case

W:= {};

G := Minimal_Basis(S); // find minimal basis of S

for each X->A in G

begin

create schema Rxa(X,A);

W:= W Union {Rxa};

end;

// make certain the key of R is preserved

if no relation from W is a superkey for R then

begin

Y := some key of R;

create schema T(Y);

W:= W Union {T};

end;

return W;

Informally, 3NF-Decompose works as follows: for each rule in the minimal
basis it creates a new relation, with the left side of the rule as the key. Then,
if no relation contained a key of the original table, one more relation is used to
preserve the key.

Things to note about 3NF-Decompose:

• 3NF-Decompose takes care of both FDs that violate 3NF and FDs that
violate 2NF.

• 3NF-Decompose may split the table into more relations than necessary. If
there are two FDs: X → A and X → B in the minimal basis, then two
tables Rxa(X, A) and Rxb(X, B) will be created. At the same time, a
single table Rx(X, A, B) is sufficient in many cases (if both A and B are
non-prime).

Properties of 3NF-Decompose :

• Lossless join. Chase procedure can be used to verify that 3NF-Decompose
yields lossless join.

5



• Dependency preservation. Every FD from the minimal basis is preserved

in one table!

• 3NF. If any of the relations Rxa created during decomposition is NOT in
3NF, then, the basis we used during the decomposition is not minimal.

6


