
. .

Cal Poly CPE/CSC 366: Database Modeling, Design and Implementation Alexander Dekhtyar
. .

XPath

Introduction

XPath is a language for addressing parts of XML documents. It has been
designed within the World Wide Web Consortium (W3C) and has a status of a
W3C Recommendation (Version 1.0, a de-facto standard).

Complete XPath Recommendation can be found here:

http://www.w3.org/TR/xpath

XPath Essentials

XPath is designed to address well-formed parts of XML documents. It is de-
signed to be used in URIs (Universal Resource Identifiers), and therefore, it has
a non-XML syntax.

XPath gives two ways of expressing paths: full syntax and abbreviated syntax.
In full syntax, an XPath expression consists of a sequence of location steps

separated by a ”/” (slash). The basic anatomy of an XPath expression, and of
a location step is shown below:

XPath ::= [/] LocationStep [/ LocationStep]*

LocationStep ::= AxisName ’::’ [NodeTest] ’[’ [Predicate]’]’

Here:

AxisName: is the name of the type of a “one-step” traversal through the XML
(DOM) tree.

NodeTest: describes the names of the XML elements of interest on current
step.

Predicate: specifies additional selection conditions on the nodes for the next
step.

1

Axes

XPath expressions describe the traversal of the XML tree. An XPath axis is
one step in the traversal. A context node is a node in the XML (DOM) tree
that is current on the path.

Axis Meaning
1 ancestor proceed to the ancestors of context node(s)
2 ancestor-or-self ancestor or self
3 attribute proceed to the attributes of context node(s)
4 child proceed to children of context node(s)
5 descendant proceed to descendants of context node in the DOM tree
6 descendant-or-self descendent or self
7 following proceed to nodes that follow context node in XML document order
8 following-sibling proceed to siblings that follow context node in XML document order
9 parent proceed to the parent of context node(s)
10 preceding proceed to nodes that preceed context node in XML document order
11 preceding-sibling proceed to siblings that follow context node in XML document order
12 self stay at context node

Node Tests

Each axis in XPath tree has a principal type:

• attribute axis has type attribute;

• all other axes have type element;

NodeTest ::= ’*’ | Name | NodeType’()’

* - matches all nodes.

Name - matches all nodes with given name.

NodeType() - matches all nodes of a specific type.

Types:

Type Explanation
node() matches all nodes
element() matches element nodes
attribute() matches attribute nodes
text() matches text nodes
comment() matches comment nodes

Predicates

Predicates specify extra conditions on selection of nodes during the current
traversal step. Predicates are built around core functions.

Functions:

Type FunctionName Explanation
number last() size of the context
number position() position of the context (in the list of siblings)
number count() number of children of the node
node-set id() value of the ID attribute
string string() converts argument into an string
boolean contains(.,.) rue if first argument contains the second
string substring(string,number,number) selects the substring
number string-length(string) returns the length of the string
number floor,ceiling,round standard meaning

2

Note: for more functions, consult the W3C Recommendation.

Predicates can be built using standard expression techniques, comparison
operators (>,<, =, !=, ≥, ≤), logical operators (and, or, not) and simple
arithmetics operators (+, −, ∗, div, mod).

Relative Path vs. Absolute Path

XPath expressions are either relative or absolute.

relative: Expression states that the traversal starts at current node.
Syntax: LocationStep [/ LocationStep]*

absolute: Expression states that the traversal starts at the root of the XML
document.
Syntax: /LocationStep [/ LocationStep]*

Document Order

Document order is defined on all the nodes in the document. It is the order
in which the first character of the XML representation of each node occurs in
the XML representation of the document. Thus, the root node will be the first
node. Element nodes occur before their children. Thus, document order

orders element nodes in order of the occurrence of their start-tag in the XML.

Examples

Notation: context node: node of the XML tree, currently being “observed” by
an XPath expression.

XPath Expression Meaning
/self::node()/child::element() Find all children of the root that are element nodes.
self::car Select current (context) node if it is car.
/descendant::name/child::first Find all first elements, that are children of name elements.
parent::node()/parent::node() Find the “grandparent” of the context node
/descendant::name/following-sibling::address Find all address elements

that have as prior siblings name elements.
/descendant::attribute() Find all attribute nodes.
preceeding::car Find all car element preceeding (in document order)

the context node.
descendant-or-self::element() Find all element nodes in the

subtree of the context node (including itself)
child::car[position()=3] Select the third car child of the context node
child::*[self::car or self::person] Select all person and car

children of the context node
child::name[child::number="2"] Select name children of context node,

if it has at least one number child
with content ”2”

/descendant::car/self::*[attribute::maker="US"] Find all car nodes that have
an attribute maker with value ”US”

Semantics

The semantics of XPath nodes is given in terms of node sets. A node set is
any collection of nodes in the DOM tree. Given a node set and an XPath
location step, a new node set is determined according to the semantics of the

3

axes, nodetests and predicates (see descriptions above) by applying the location
step to each node from the node set individually and taking the union of all
“reached” nodes.

Absolute XPath expressions start at the root node (i.e., input context node
set is a set containing a single node, the root).

Relative XPath expressions assume that there is a context node set and op-
erate on it.

Abbreviated Syntax

For simplicity some axes, node tests and predicates can be abbreviated.

Abbreviated XPath Expression XPath Expression
car child::car

* child::element()

text() child::text()

@maker attribute::maker

@* attribute::*

x//y child::x/descendant::y

. self::node()

.. parent::node()

../@maker parent::node()/attribute::maker

car[5] child::car[position()=5]

car[@maker="US"] child::car/self::node()[maker="US"]

car[milage] child::car/self::node()[child::milage]

More complex examples:

//car/../../*[5]: Select all nodes, that are a fifth child of a “grandparent
of a car node.

/*/*/*[@*]: Select all “great grandchildren” of the root that have attributes.

..//: select all descendants of the parent of the context node.

../*: select all element siblings of the context node.

4

