
. .
CSC 369 Distributed Computing Alexander Dekhtyar
. .

Finding Top K using MapReduce

Overview

The Top K problem is defined as follows:

Given a list of objects find K objects that have the highest value of
a specific property all objects possess.

Examples. There are plenty of examples showing the need for solving the Top
K problem. Some questions leading to this are below.

• Find 10 tallest basketball players in NBA.

• Find 20 products with the highest total sales volume across all branches
of the store chain.

• Find the person with the highest salary in the organization.

• Find 30 students closest to graduation (based on their units counts).

Properties. The Top K problem has the following properties that make it
challenging to implement it in MapReduce framework.

• Globality. This is a global problem in a sense that without observing all
data it is impossible to produce the proper output.

• Bad reduce-side algorithm. One way to solve this problem is on the
reduce side. This however (see below) is highly inefficient.

Solution Overview. The map-side solution to the Top K problem leverages
the fact that the MapReduce mapper API has two more functions in addition
to map(): setup() and cleanup().

Storing Top K records

Whether solve reduce-side or map-side, we need a data structure to keep the top

K records while processing the data. The following can be used:

1



1. Priority Queue. The queue will store the Top K currently observed
objects. We take advantage of size(), getMin(), removeMin() and insert()
functions.

2. Sorted List. insert() must keep the list sorted. removeMin() pops the
top element.

3. Array. If K is small, linear scans of the array to find the smallest element
are going to be cheap.

4. Hash Table. Assuming we have the ability to linearly scan it.

Reduce-side solution

A straighforward solution that finds the Top K record is for map() to emit all
records under the same key, and for reduce() to discover the top K records.

In pseudocode below, we assume that each input record stored in record has
a field v which is used to produce the Top K records.

constant int K := .. ; // assume K is given.

function map(key, value) {

emit(1, value);

}

function reduce(key, values) {

PriorityQueue queue := new PriorityQueue(); // initialize an empty priority queue

for record in values do

if queue.size() <= K then // at the beginning keep adding records to the queue

queue.insert(record);

else // once queue is full

current := record.v;

min := queue.getMin();

if current > min then // replace worst record if current record is better

queue.removeMin();

queue.insert(record);

end if

end if

end for

for r in queue do // output result

emit(r, null)

end for

}

Problem with reduce-side solution. Reduce() is the bottleneck here, be-
cause all objects are emitted with the same key.

Effectively, there is no distribution of work.

Mappers

For map-side solution, we need to expand our concept of the mapper.

2



Mapper API. We consider a MapReduce mapper to implement the following
three functions:

1. map(key, value): accepts a key-value pair and emits (if necessary) new
key-value pairs.

2. setup(): this function is run once for each input split before map() is run
on each record of the split.

3. cleanup(): this function is run once for each input split after the last
map() function is run on the final record of the split.

We also take the Object-Oriented view of the MapReduce mappers, and allow
for instance variables representing necessary for data processing data structures
to be present in the mapper, and to be manipulated by setup(), map() and
cleanup().

Map-side Top K

Our map-side solution of the Top K problem proceeds as follows:

1. Split input data into multiple splits.

2. For each split, use a mapper to find and emit the Top K objects in the
split.

3. Use reduce() to merge the Top K lists from each mapper instance and
produce the overal Top K list.

Normally, K is much smaller than the size of the incoming dataset (N). If m

is the number of splits, we can safely assume that K · m << N , and therefore,
only a fraction of data will be emitted from mappers to the reducer.

The pseudocode implementation of this is presented below.

class Mapper {

constant int K = ..;

PriorityQueue queue;

function setup() {

queue:= new PriorityQueue(); // setup() simply initializes the priority queue

}

function map(key, value) {

if queue.size < K then

queue.insert(value);

else

current := value.v;

min := queue.getMin();

if current > min then

queue.removeMin();

queue.insert(value);

end if

end if

}

function cleanup() {

3



for each r in queue do

emit(1, r);

end for

}

} //Mapper

// Reducer class only requires use of reduce() function

function reduce(key, values) {

PriorityQueue queue := new PriorityQueue(); // initialize an empty priority queue

for record in values do

if queue.size() <= K then // at the beginning keep adding records to the queue

queue.insert(record);

else // once queue is full

current := record.v;

min := queue.getMin();

if current > min then // replace worst record if current record is better

queue.removeMin();

queue.insert(record);

end if

end if

end for

for r in queue do // output result

emit(r, null)

end for

}

Note: The reduce() function for the map-side Top K is the same as for reduce-
side Top K.

The key difference is how many records are passed out of the mapper and into
the reducer.

4


