Fall 2010 CSC 466: Knowledge Discovery from Data Alexander Dekhtyar

Lab 1: Working with Data

Due date: Monday, September 27 (beginning of lab period).

Lab Assignment

In this course you will write a lot of programs that work with large quantities
of data. Two forms of data your programs will have to handle most often are
CSV files (containing mostly, although not exclusively, numbers) and text
files containing English text. This lab asks you to write code for reading,
parsing and performing simple manipulations with the data entered from
files. While not every single piece of code you write for this lab may wind
up being useful elsewhere in the course, some will.

This is a pair programming assignment. You pick your partner during the
September 20 lab session. I will allow for one team of size three to accom-
modate the parity of the course roster. I strongly discourage individual
work for this (and other team/pair programming) lab(s), even if you think
you can do it all by yourself.

Tasks

Data Formats

For this assignment you will work with data stored in two different formats:
numeric CSV files and plain text files. The formats are briefly described
below.

CSV Files. CSV,or Comma-Separated Value file format is one of the most
commonly used formats for relational/spreadsheet-style data data transfer.
Most of data sets you will be using this quarter will come in this format.

For this lab, you will be working with numeric CSV files, i.e., files that
store only numbers (integers and/or reals). A CSV file consists of a number

of lines. Each line contains a list of values: integers or reals, in our case. The
values are separated by commas (',"). Missing values are allowed: they are
identified by two consecutive commas. Whitespace (spaces, tabs) is ignored,
but line breaks signal beginning of a new line (row) of values.

Different lines from the same file are expected to have the same number
of values in them, but this is not a guarantee. Sometimes, a single CSV
file may contain more than one data table in it, in which case, rows from
different tables can have drastically different numbers of values.

Some examples of data in CSV format are:

1, 2, 3, b5
10, 11, 12, 14
20, 30, 40, 50

Here, the dataset consists of three lines (rows), each of which contains
four values (columns). All values are integer.

This dataset contains three rows, but each row has different number of
values (columns). All values are integer.

1.4, 4.56, 2, 3.45
20.0, 2.2, 3, 4.55

Here, we have two rows, each containing four columns. Third column
contains integer values, other columns - real values.

This dataset describes three rows, each with five columns. However, not
all values are defined. In the first row, the value for the third column is
missing, in the second row — the value for the second column and in the
third row, all but the last columns have undefined values.

Plain text. Plain text file format is the simplest file format for storage and
transfer of textual information. In this lab, we treat the contents of a such
files as a text document written in English (the latter, generally speaking, is
irrelevant). We assume that plain text files contain only ASCII characters
(no need for Unicode support in this lab).

A plain text file is a collection of words that are united into sentences
(sequences of words that terminate with one of the specified punctuation

signs). Sentences are formed into paragraphs (sequences of sentences that
are terminated in an empty line). Words are separated from each other by
punctuation, whitespace and line breaks (we assume that no words are split
by a line break in the middle). A paragraph break terminates a sentence
even if there is no punctuation at the end of it.

Some examples of plain text data:

Twas brillig, and the slithy toves
Did gyre and gimble in the wabe:
All mimsy were the borogoves,

And the mome raths outgrabe.

This text! is a single paragraph, consisting of a single sentence.

Stately, plump Buck Mulligan came from the stairhead, bearing a bowl of
lather on which a mirror and a razor lay crossed. A yellow dressinggown,
ungirdled, was sustained gently behind him on the mild morning air.

This text? has a single paragraph with two sentences.

Whether I shall turn out to be the hero of my own life, or whether that station
will be held by anybody else, these pages must show. To begin my life with

the beginning of my life, I record that I was born (as I have been informed

and believe) on a Friday, at twelve o’clock at night. It was remarked that

the clock began to strike, and I began to cry, simultaneously.

In consideration of the day and hour of my birth, it was declared by the
nurse, and by some sage women in the neighbourhood who had taken a lively
interest in me several months before there was any possibility of our becoming
personally acquainted, first, that I was destined to be unlucky in life; and
secondly, that I was privileged to see ghosts and spirits; both

these gifts inevitably attaching, as they believed, to all unlucky infants of
either gender, born towards the small hours on a Friday night.

This text3, contains two paragraphs.

’That is all right,’ said the Psychologist.
’Nor, having only length, breadth, and thickness, can a cube have a real existence.’

’There I object,’ said Filby. ’0f course a solid body may exist. All real things’

!Lewis Carroll, Jabberwocky.

2James Joyce, Ulysses, http://www.gutenberg.org/files/4300/4300-h /4300-h.htm

3Charles Dickens, David Copperfield, http://www.gutenberg.org/files/766/766-h/766-
h.htm

’So most people think. But wait a moment. Can an instantaneous cube exist?’
’Don’t follow you,’ said Filby.

’Can a cube that does not last for any time at all, have a real existence?’

This document?, contains six paragraphs representing direct speech. One
of these paragraphs (paragraph 3) ends without the end-of-sentence punc-
tuation, but the sentence "A1l real things" terminates at the end of that
paragraph.

The following punctuation characters terminate sentences:

Character(s) Name

Period
! Exclamation point
? Question mark

The following punctuation characters separate words but do not terminate

sentences:

Character(s) Name

) Comma

- Dash
Colon
Semicolon
Opening parenthesis
Closing parenthesis
Single quotation mark
" Double quotation mark

Ellipses

. o e

The following punctuation characters may appear in the middle of a single
word:
Character(s) Name
- Hyphen
) Apostrophe

Note: A dash and a hyphen are represented by the same ASCII character
in plain text. You can distinguish them using the following rule: a dash is
always separated from other characters by spaces on both sides (e.g. " woke
- and left"), while a hyphen is always preceded and followed by a letter
(or a number) character (e.g., "state-of-the-art").

Note: A single quotation mark and an apostrophe are represented by the
same ASCII character in plain text. You can distinguish them by using the
following rule: an apostrophe is always preceeded and followed by a letter
character (e.g., don’t, can’t), while a single quotation mark must be ei-
ther preceeded or succeeded by a space or another word /sentence-separating
punctuation character (e.g. this ’fun’ thing or ’This is it’, he
thought).

4H.G. Wells, The Time Machine, http://www.gutenberg.org/cache/epub/35/pg35.html

This rule will cause apostrophes at the ends of the words (boys’, Joneses”’)
to be treated as single quotation marks, but this will not prevent proper
recognition of the words, so we will let it slide.

Note: FElipses do not end the sentence. For a sentence to end, a fourth
"dot” (a period) must be present (e.g., So, this is where you are....).

General Notes

You will write a number of function/method libraries for this assignment. It
is up to each pair to decide which programming language to use. However,
I do recommend that you select meaningful mainstream languages, as you
may wind up wanting to reuse some of the code you developed in one (or
more) of the subsequent labs, and, quite possibly, with a different partner.
Students in a prior version of CSC 466 used Java, C, C++ and Python for
the coursework (my recollection).

Work with CSV Files

We will interpret each line of a CSV file as a numeric vector. Different
vectors may have different number of dimensions (depending on the input).
You can represent missing numeric values as 0.

Your goal is to build a set of tools to work with CSV files and vectors of
numbers that they contain. The tools must support the following function-
ality:

1. Opening a CSV file given its name/location on disk.

2. Reading individual vectors from the CSV file. Your code must cor-
rectly identify each value read from input, the end of the line (record/vector)
and missing value situations.

3. Storing all vectors read from the input file in a main memory data
structure (array, hash table, list, or any other data structure you
choose). The data structure must be easily traversable (i.e., it should
be relatively straightforward to traverse/loop over all vectors read from
the CSV file).

4. Traversing the vectors retrieved from the CSV file.

5. Performing some computations on the retrieved vectors. In particular:

Computing the length of the vector.

Computing the dot product of a pair of vectors.

Computing the Eucledian distance between a pair of vectors.

Computing the Manhattan distance between a pair of vectors.

Computing the Pearson correlation between a pair of vectors.

e Computing the largest, the smallest and the mean value in the
vector.

e Computing the largest, the smallest and the mean value in a
single column for the entire collection of vectors.

e Computing the standard deviations of values within the vector
and within a single column for the entire collection of vectors.

Testing. You are tasked with providing me with evidence that the above-
mentioned functionality has been implemented and works properly. Gener-
ally speaking, this means that you should write one or more programs that
jointly use all the functionality described above. You can do it in a "unit
test” manner (one small program per piece of functionality), or by writing
a single program that tests everything, or by doing something in between.

Work with text files.

Your assignment for working with text files is similar. You will develop a
library of methods/functions which jointly implement all the functionality
listed below:

1. Opening a plain text file.

2. Reading the contents of the file, word-by-word, sentence-by-sentence,
paragraph-by-paragraph.

3. Creating and maintaining a list of words found in the document.

4. Creating and maintaining a list of words found in the document with
the frequency counts.

5. Counting the total number of words, different words, sentences, para-
graphs found in the document.

6. Reporting the most frequent word/words, all words with frequencies
equal to a given number, all words with frequencies exceeding a given
number.

7. Checking if a word is found in a document.
Extra Credit. For extra credit, implement the following functionality:

1. Maintaining a list of words in each sentence.

2. Checking if a pair of words appears together in at least one sentence
in the document.

3. Reporting how many times a pair of words appears together in the
same sentence in the document.

Testing. Just as with CSV files, you are responsible for creating appro-
priate test programs that illustrate all the implemented functionality.

Data and Submission Instructions.

Data files. Some data files for both parts of the assignment are provided
by the instructor (you can get them from the Lab 1 page on the home page
of the course). You can also add your own data files for testing purposes.

Submission instructions. Submit all the source code you developed
and all the extra data files you used. Include a README file which de-
scribes the contents of each submitted file (or, at least, each submitted
program/library/class). Also include any compilation instructions in the
README file. If you used make, submit the makefile, and include instruc-
tions in the README file.

You will use the handin tool to submit your files. Each groups submits
exactly one copy of all materials. To submit use the following command:

$ handin dekhtyar 1lab01-466 <files>

Demo. Each team will be asked to do a short demo during the lab period
on Monday, September 27. The lab grade will not be assigned until after
the demo.

