Spring 2009 CSC 466: Knowledge Discovery from Data  Alexander Dekhtyar

Lab 5: Collaborative Filtering and Recommender Systems

Due date: Wednesday, November 10.

Overview

In this assignment you will implement a number of memory-based collab-
orative filtering techniques and will test their accuracy on a stable (i.e.,
non-changing) collection of ratings made available to you. You can use
techniques studied in class, or any extensions you can find in literature or
come up with yourselves.

Assignment Preparation

This is a pair programming assignment. Each student teams up with a
partner. Each team submits only one copy of the assignment deliverables.

Data

You will be using joke ratings data from the Jester project, run by Professor
Ken Goldberg at UC Berkeley. Jester[l] is an on-line joke recommender
system available at

http://shadow.ieor.berkeley.edu/humor/

Disclaimer. Please read this note before proceeding! Jester has
a database consisting of 100 jokes. The jokes are shown to the user, and
the user’s reaction to them is measured on a continuous scale. Please be
aware that the jokes available through Jester may contain some examples
that you personally will find objectionable. While you will only be working
with numeric data, and do not have to deal with the text of the jokes in
this assignment, please know, that it is not my intent to offend anyone’s



sensibilities (and neither is it the intent of the authors of the dataset and
Jester).

The Dataset

I have created a page on the course wiki to post links to the files you will
need for this assignment:

http://wiki.csc.calpoly.edu/csc466-2010/wiki/Labb
The full Jester dataset is available at

http://www.ieor.berkeley.edu/~goldberg/jester-data/

Ratings Data. The full dataset contains three data files of roughly equal
size. Of the three files, you will be using only the first one, jester-data-1.
The file is available for download as a zip archive from the Jester page
above. For your convenience, a CSV version of the file is available for down-
load from our wiki page.

The Jester dataset web page describes the format of the data as follows|2]:

" Format:

1. 3 Data files contain anonymous ratings data from 73,421 users.

2. Data files are in .zip format, when unzipped, they are in Excel
(.xIs) format

3. Ratings are real values ranging from -10.00 to +10.00 (the
value "99" corresponds to "null" = "not rated”).

4. One row per user

5. The first column gives the number of jokes rated by that user.
The next 100 columns give the ratings for jokes 01 - 100.

6. The sub-matrix including only columns 5, 7, 8, 13, 15, 16, 17,
18, 19, 20 is dense. Almost all users have rated those jokes
(see discussion of "universal queries” in the above paper).”

Jokes. The list of jokes is available from the following direct url:
http://eigentaste.berkeley.edu/jester-data/jester-joke-texts.zip

The archive contains the list of jokes in html format. For simplicity, a single

XML file Jokes.xml listing the jokes is available from the course wiki page.

The structure of the file is:

<jokes>
<joke>



text of joke goes here ...
</joke>
<joke> ... </joke>

</jokes>

The jokes are not numbered internally in the XML file, but their order
corresponds to the joke ids in the ratings data file. Note, that the assignment
does not require you to process this XML document. It is provided for your

convenience, as you may find knowing the specific joke whose rating you are
trying to predict.

Lab Assignment

In this lab you will implement and test three or more different collaborative
filtering techniques and perform an accuracy study. The lab consists of the
following components.

Parser and data processor. Your program shall parse the input CSV file
(for the jester-data-1 subset — feel free to hardcode that). The format of
the CSV file was described above. While parsing, your program shall create
and maintain the data structures necessary for collecting and maintaining all
information needed for your collaborative filtering techniques. In particular,
your program shall manage the data structures for the following:

1. The complete ratings matrix. The full matrix can be stored as either
sparse or dense matrix and either in main memory or in persistant
storage. If storing the entire data structure in main memory, make
certain your program is allocated sufficient amount of memory at run-
time. Note that your program will spend a lot of time looping through
the ratings matrix, so the overall running time of your methods will
mostly depend on how fast you can scan the ratings matrix. While
the running time of your methods is not being evaluated in this as-
signment, slow programs present debugging challenges.

2. Any item-related statistics, such as average item rating or inverse user
frequency of an item, as needed by your collaborative filtering methods.

3. Any user-related statistics such as average user rating or number of
rated items, as needed by your collaborative filtering methods.

Note that for the sake of efficiency, your programs are expected to com-
pute various parameters used in collaborative filtering methods off-line, i.e.,
before a collaborative filtering query is issued.

Collaborative Filtering techniques. You shall implement at least three
different memory-based collaborative filtering techniques. You can imple-
ment any techniques discussed in class. You can also implement any other



techniques/extensions that you can find in the literature as long as you ac-
quire understanding of how the technique works. Techniques can differ from
each other by the type of similarity score used (e.g., Pearson correlation vs.
cosine similarity), the formula used to compute the predicted rating, ratings
transformations and adjustments and so on.

Each technique shall be implemented as a separate function/method® It
should take as input, or, otherwise, have direct access to, the ratings matrix
and to all the statistics you are maintaining.

Additionally, each method shall take as input two parameters: int UserId
and int ItemId. The pair (UserId, ItemId) is the pair of values for which
the method will make the prediction of the ratings score. Your implemen-
tation of each collaborative filtering technique shall work as follows:

e [f the ratings matrix has value 99 at the (UserId, ItemId) location,
then your method shall compute the predicted rating using the entire
ratings matrix.

e If the ratings matrix has a value between —10.00 and +10.00, then
your method shall replace this value in the ratings matrix with 99
and proceed to predict the user rating for the item using the updated
ratings matrix.

The predicted rating your methods output should be in the same range
(from —10 to +10) as ratings in the dataset.

Evaluation. You will evaluate all methods you implemented using the
MAE (Mean Absolute Error) metric. To facilitate the evaluation, you will
create two evaluation methods. Both methods will take as input the follow-
ing parameters:

e int method. This parameter specifies which of your collaborative
filtering techniques will be tested.

e int size. This parameter specifies the number of predictions you
should evaluate.

The first method, random sampling will do the following:

e randomly generate size test cases. Note: a test case is a pair (userID,
itemID), such that rating(userID,itemID) # 99 (i.e., each test case
represents prediction of a score actually found in the matrix).

e for each generated test case, use the selected collaborative filtering
method to predict the rating;

e compare the predicted rating with the actual rating;

In Java, feel free to devote a class to each method, or to make all methods members
of the same class.



e output the results;

e compute and output the Mean Absolute Error (MAE) achieved in your
test.

The second method, user-specified test will take as input a list of
(userID, itemID) pairs and do the following:

e for each test case (i.e., the (userID, itemID) pair, determine whether
it is valid, i.e., whether rating(userID,itemID) # 99.

e for each valid test case, compute the predicted rating using the speci-
fied method.

e compare the predicted rating with the actual rating;
e output the result;

e compute and output the Mean Absolute Error (MAE) achieved in the
test.

Both methods should provide exactly the same output. For each test case,
a single line (in a CSV format) shall be printed in the following format:

userID, itemID, Actual_Rating, Predicted_Rating, Delta_Rating

The columns are:

userID: id of the user (line in the ratings table)

itemID: id of the joke (column in the ratings table)

Actual Rating: User rating for the joke from the Jester dataset

Predicted Rating: Rating predicted by your method

Delta Rating: the difference between Actual Rating and Predicted Rating

At the end of the list, your output should contain the MAE measure, as
well as any other measures your want to keep track of. (Note: only the MAE
measure will be used in grading. However, you can use other measures to
conduct your analysis).

Programs. Using the methods described above, write two programs: EvaluateCFRandom. java
and EvaluateCFList. java.

EvaluateCFRandom.java is, essentially, a wrapper around the first eval-
uation method discussed above. When run with no parameters, it shall print
a help message indicating the list of collaborative filtering methods imple-
mented and their Ids. Otherwise, the program shall take two parameters:

> java EvaluateCFRandom Method Size

Here, Method is the collaborative filtering method and size is the number
of test cases to generate. The program shall execute the first evaluation
method and print the output.



EvaluateCFList.java uses the second evaluation method to predict the
ratings for a collection of test cases contained in a file. When run without
parameters, the program shall print a help message indicating the list of
collaborative filtering methods implemented and their Ids. Otherwise, it
shall take two parameters:

> java EvaluateCFList Method Filename

where Method is the Id of the collaborative filtering method to be used
in evaluation and Filename is the name of a file containing the list of test
cases. The format of the file is straightforward: each line will contain two
comma-separated integers: UserID and ItemID. Here is an example of a test
file SimpleTest.csv:

1, 50
75, 34
100, 8
25, 20
1010, 33

The program outputs the result of running the second evaluation method
on the data from the input file.

Report. Each team will submit a report detailing the methods imple-
mented and the results obtained. The report, submitted as a single docu-
ment, shall contain the following information:

e Names of team members.

e List of methods implemented and studied. If you implemented any
methods, not mentioned in lecture notes, please provide a brief overview
of the method and an academic citation (where you found it from).

e Research questions. What are you trying to study? (Essentially, you
are trying to figure out which method works better, but I want to
you formulate the precise question/questions you are going to give the
answer to).

e List of your experiments. Sepcify what experiments you conducted in
order to answer your questions.

e Results: show the results of your experiments. Provide visualizations
(graphs, charts, etc..) where appropriate.

e Conclusions. State what you have discovered. In particular, specify,
which of the methods you studied, you believe to be the best and what
accuracy rates you have observed for this method.



Extra Credit. For this assignment, we will run a contest. Your programs
will be run on two test datasets: a public dataset, which will be made
available to you and a private dataset which you will not know. Teams
whose collaborative filtering methods place in top 3 by Mean Absolute Error
on both datasets (jointly) will receive extra credit. To qualify, we must
certify that your code performs faithfully, i.e., does not use the value of
rating in its prediction of that very rating.

Deliverables and submission instructions

The lab has both electronic and hardcopy deliverables. Submit electroni-
cally:

e All source code for all programs you create for this assignment.

e README file describing the following:

— names of all team members;

— names of all executable programs and information on how to com-
pile/run them (if necessary).

— list of implemented methods and their codes.
e The soft copy of your report.

Submit all electronic deliverables as a single zip of gzipped tar archive
(1ab05.zip or 1ab05.tar.gz). Use the following command

$ handin dekhtyar-grader lab05 1ab05.<ext>

Additionally, please submit the soft copy of your report to the wiki.

The hardcopy deliverable is the hardcopy of the report. Bring it to class
on the lab due date and submit to the instructor.

References

[1] Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins.
FEigentaste: A Constant Time Collaborative Filtering Algorithm. In-
formation Retrieval, 4(2), 133-151. July 2001.

[2] Ken Goldberg, Anonymous Ratings Data from the Jester Online Joke
Recommender System, http://www.ieor.berkeley.edu/~goldberg/jester-
data/.



