Fall 2010 CSC 466: Knowledge Discovery from Data Alexander Dekhtyar

Lab 6: Information Retrieval

Due date: Monday, November 22, beginning of the lab period.

Note: You will receive Lab 7 assignment on November 17 (and it will
be due November 29). Because of this, it is best to have as much of Lab 6
completed on or by November 17-18 as possible. The weekend is provided
to give you more flexibility.

Overview

In this assignment you will build a simple Information Retrieval system for
a small collection of documents. We will use Jester jokes as a test dataset,
but other text documents (stored as text files) can be used within your
system. Your system will be an interactive command-line program which
takes as input user commands and produces specified output.

Assignment Preparation

This is a pair programming assignment. FEach student teams up with a
partner. Each team submits only one copy of the assignment deliverables.

Data

You will be using joke text collection from the Jester project, run by Profes-
sor Ken Goldberg at UC Berkeley. Jester|?] is an on-line joke recommender
system available at

http://shadow.ieor.berkeley.edu/humor/

Disclaimer. Jester has a database consisting of 100 jokes. The jokes
are shown to the user, and the user’s reaction to them is measured on a
continuous scale. Please be aware that the jokes available through Jester

may contain some examples that you personally will find tasteless, sexist,
inapropriate or just plain stupid. It is not my intent to offend anyone’s
sensibilities by using this dataset.

The Dataset

I have created a page on the course wiki to post links to the files you will
need for this assignment:

http://wiki.csc.calpoly.edu/csc466-2010/wiki/jester
The full Jester jokes data is available as a collection of .html files at
http://eigentaste.berkeley.edu/jester-data/jester-joke-texts.zip

It is also available as a single XML file Jokes.xml from the wiki page above.
The structure of the file is:

<jokes>
<joke>
text of joke goes here ...
</ joke>
<joke> ... </joke>

</jokes>

The jokes are not numbered internally in the XML file, but their order
corresponds to the joke ids in the used in the program.

Lab Assignment

You will build a simple text-based command-line Information Retrieval sys-
tem for the Jester jokes. Your program will give users a prompt, accept
commands, provide output. The detailed specifications are below.

System Overview

RO. The information retrieval system you will create will work in an in-
teractive mode. Name the main Java program ir. java.

R1. When the program is started, it shall provide the user with a prompt
and prepare to accept commands, as shown below:

$ java ir

IR System Version 1.0
IR>

User enters one of the commands described in requirement R2. The
system executes the command, produces necessary output, and, unless it
was a QUIT command, returns back to the prompt and waiting for user
input.

R2. Your system shall recognize, correctly parse and process the following
list of commands:

Command Meaning

READ <file.xml> Read text document(s) from an XML file

READ <file.txt> Read text document from a text file

READ LIST <file> Read text documents from files listed in <file>
LIST Output the list of documents available in the system
CLEAR Remove all documents from the system

PRINT <DocID> Print the content of the document to screen

SHOW <DocID> Show the internal representation of the document

SIM <Docl> <Doc2> Compute and output the similarity between two documents

SEARCH DOC <DocId> Search for documents similar to given document
SEARCH "string" Search for documents relevant to the query string
QUIT Quit the proram

Your program must accept the ALLCAPS command syntax. You may choose
to make all commands case insensitive.

R3. Your system shall support persistent storage of information. This
means that your system shall maintain the list of documents that have been
processed and the actual data structures in which the vectors of keyword
weights are stored and remember them between the runs of the program. The
data read into your program during a session shall NOT be abandoned upon
encountering the QUIT command. When your program is restarted, it shall
be able to access the information about the documents already processed.

R4. The three commands to read data have the following syntax:
READ <file>.xml
READ <file>.txt
READ LIST <file>
The first command is used to parse the contents of an XML file, whose
structure matches the structure of Jokes.xml file. It is invoked if the file-

name ends in .xml. The XML file may contain one document or multiple
documents.

The second comand is used to read in the contents of a single document
from a plain text file containing it. The command is invoked when the file
name ends with .txt.

The third command reads in a file that contains the list of text file names.
It then proceeds to read in, one-by-one the documents stored in the files
with those names.

R5. The reading of a document procedure is described here. Each docu-
ment read into the system shall go through the following set of steps:

e Parsing and tokenization. Document split into tokens, each repre-
senting a single word in the document (plus, possibly some tokens for
sentence delimiters and so on).

e Stopword removal. Stopwords need to be removed. For discussion
on the list of stopwords, please consult the Appendix.

e Stemming. Use Porter’s algorithm. Feel free to use the open-source
implementations available. See Appendix for more information on it.

e Vocabulary maintenance. The vocabulary or corpus of your doc-
ument collection is the list of all terms (keywords) found in all the
documents in the collection. Because your are constructing the collec-
tion one document at a time, the vocabulary will also be built in steps.
Each time a new document is processed, your program shall add any
new keywords found in it to the vocabulary.

Your program shall also maintain the document frequency (and idf,
the inverse document frequency) in for each term in the vocabulary.

e Vector Space representation. The document, represented, after
the stemming step by a bag of words shall be converted into a vector
of keyword weights. The exact formulae to use to compute the keyword
weights is left up to you, but you must use term frequency (tf) and
inverse document frequency (idf) as in your computation. You can use
tf-idf or any variation of it you know/learn.

The vectors of keyword weights you construct shall be stored as
sparse vectors. Your program shall maintain a copy of all vectors
in persistent storage and be able to read them from persistent storage
when necessary.

R6. The LIST command outputs the list of document IDs stored in the
current document collection. The Document Ids are printed one per line of
the output.

The Document Id of a document read from a text file is the name of the
file. The document Id of a document read from an XML file containing
multiple documents is the name of the XML file, followed by the ordinal,
representing the position of the document in the XML file. You can choose

to keep the .txt and .xml extensions, or remove them. Document IDs must
be unique, however, the same document can show up under multiple ids (if,
e.g., it was found in two text files with different names).

For example, let XML file Test.xml contain four documents in it. Then,
the document Ids for these documents can be Testl, Test2, Test3 and
Test4, or Test.xml-1, Test.xml-2, Test.xml-3 and Test.xml-4. You can
use padding: e.g., if more than 10 documents are present, you can name
them TestO01 of Test.xml-03.

R7. The CLEAR command takes no parameters and has no visible out-
put. Its result is the removal of all memory-resident and persistent infor-
mation about the documents in the document collection. Essentially, the
CLEAR command removes all the documents from the document collection,
or deletes the document collection itself.

R8. The PRINT command has the following syntax:
PRINT <DocID>

As the result of this command the full text of the document with the
given document ID is printed out. The text should be printed verbatim as
it was found in the original file (you can parse out XML, if the original of
the document was in an XML file). Feel free to simply open the appropriate
file (associated with the document) and print its contents verbatim (or parse
out the appropriate XML element, and print its contents verbatim).

R9. The SHOW command has the following syntax:
SHOW <DocID>

This command results in the system printing the keyword weights vector
associated with the document whose ID is listed in the command. The
format of the output is left up to each team. The output shall contain the
keyword /keyword stem/keyword ID and the keyword weight for all keywords
that have a non-zero weight in the document vector.

R10. The SIM command has the following syntax
SIM <Docl1> <Doc2>

Given this command, the system performs a similarity computation on
keyword weight vectors associated with the documents <Doc1> and <Doc2>.
The resulting similarity score is reported to the user.

You can choose any way of computing similarity discussed in class/found
in textbook/found in lecture notes/discovered by you independently. If you

implement more than one similarity computation in your system, select a
default one to use when the SIM command is given in the form above.

You can then modify the SIM command to have the syntax
SIM <Method> <Doc1> <Doc2>

and/or

SIM ALL <Docl> <Doc2>

In the former case, you can pick the keywords to describe each method.
E.g., if your system implements TF-IDF and Okapi similarity computations,
you can use TFIDF and OKAPT as the values of the <Method> parameter with
obvious effects.

SIM ALL command shall result in all similarity computations performed
and reported.

R11. The SEARCH command has two variants:
SEARCH DOC <DocId>

and
SEARCH "string"

The first variant shall cause your system to retrieve all documents similar
to the document with the given document ID. The second variant shall
cause your system to retrieve all documents deemed relevant to the input
query. The query should be enclosed in double quote symbols. The query
shall be treated as a text representing a document and shall subjected to
parsing, stopword removal and stemming just like the documents are. You
may choose a way of determining the vector of term weights for a query that
differs from what you do for a document when executing a READ command.

The output shall include document IDs and similarity scores for all docu-
ments with a non-zero similarity with the query (be it a document or a text
query) reported in descending order of the similarity score.

You can also implement the limiting version of these two commands:
SEARCH DOC <DocId> <Number>

SEARCH "string" <Number>

In either case, <Number> is the number of relevant matches to show. E.g.,
SEARCH "Cal Poly basketball" 2

shall report the top two matches for the query "Cal Poly basketball".

R12. The QUIT command causes the system to quit.

R13. The system shall have basic error-handling capabilities. In particu-
lar, the system shall never throw an unhandled exception and stop working
as a result of an error in the command. Upon receiving a command, the
system shall check for validity of the instruction and the parameters. If the
parameters are incorrect (e.g., file not found, wrong document Id, incor-
rectly formatted string query and so on), an error message shall be reported
by the system, and the system shall output the prompt and wait for the
next command from the user.

Deliverables and submission instructions
This lab has only electronic deliverables. Submit the following;:

e Source code for the IR system.
e README file describing the following:

— names of all team members;

— specifics of implementation, in particular, what weighting method(s)
and similarity score(s) you used.

— any compile/runtime instructions for the TA;

— any extra credit claims. The extra credit is given for implement-
ing more than one retrieval method. Any instructions related
to extensions of the command list to realize extra credit in the
system shall be included as well.

Submit all electronic deliverables as a single zip of gzipped tar archive
(1ab06.zip or 1ab06.tar.gz). Use the following command

$ handin dekhtyar-grader lab06 1ab06.<ext>

Appendix: Stopword removal

A wide range of English stopword lists can be found on-line. The Lab 6 data
page,

http://users.csc.calpoly.edu/~dekhtyar/466-Fall2010/

contains links to a number of such resources and a collection of text files
with the stopword lists found there.

You should feel free to either use any of the provided stopword lists, use
any other stopword lists you discover, build your own list from scratch, or
edit an existing list.

Appendix: Stemming and Porter Algorithm

The Lab 6 data page contains links to the official page for Porter Stemming
Algorithm, the java code for it and a copy of the paper describing the algo-
rithm. Porter algorithm implementations in other languages are found on
the official page.

References

[1] Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins.
Eigentaste: A Constant Time Collaborative Filtering Algorithm. In-
formation Retrieval, 4(2), 133-151. July 2001.

[2] Ken Goldberg, Anonymous Ratings Data from the Jester Online Joke
Recommender System, http://www.ieor.berkeley.edu/~goldberg/jester-
data/.

