
. .
Spring 2009 CSC 466: Knowledge Discovery from Data Alexander Dekhtyar
. .

Data Mining:
Mining Association Rules

Definitions

Market Baskets. Consider a setI = {i1, . . . , im}. We call the elements ofI,
items.

A market basket is any subsetS of I: S ⊂ I.

A market basket datasetor a set ofmarket basket transactionsis a collection
T = {t1, . . . , tn} of market baskets.

Association Rules. Let I be a set of items. Anassociation ruleis animplication
of the form

X −→ Y,

whereX ⊂ I, Y ⊂ I andX ∩ Y = ∅.

We refer toX andY asitemsets.

Support and confidence for association rules. Let I be a set of items andT =
{t1, . . . , tn} be a market basket dataset. LetR : X −→ Y be an association rule.

Thesupport of R in the datasetT is the percentage of market basketsti ∈ T which
containX ∪ Y :

supportT (X −→ Y ) =
|{ti ∈ T |X ∪ Y ⊆ ti}|

n
.

Theconfidenceof R in the datasetT is the percentage of market basketsti ∈ T

that containX, whichalsocontainY :

confidenceT (X −→ Y ) =
|{ti ∈ T |X ∪ Y ⊆ ti}|

|{tj ∈ T |X ⊆ tj}|
.

1



Also, given an itemsetX, its support is the percentage of market basketsti ∈ T

that contain it:

supportT (X) =
|{ti ∈ T |X ⊆ ti}|

n
.

• Support of an association rule determines itscoverage: how many market
baskets (or what percentage of all market baskets) the rule affects. We want
to find association rules withhigh support, because such rules will be about
transactions/market baskets thatcommonly occur.

• Confidenceof an association rule determines itspredictability, i.e., how of-
ten it occurs among the affected market baskets.We want to find association
rules withhigh confidence, because such rules representstrong relation-
shipsbetween items.

Association Rules mining problem. Given a set of itemsI,a market basket
datasetT and two numbers:minSup and minConf, find all association rules
that occur with the support ofat leastminSup and confidence of at leastminConf
for T .

Note: The problem of mining association rules requires the returnof all asso-
ciation rules found, i.e., it is complete. There are variations on the theme, which
allow for return of a subset of all discovered association rules.

Brute-force solution for association rules mining problem. There is a simple
brute-force algorithm for mining association rules:

Algrithm ARM_BRUTE_FORCE(T, I, minSup, minConf)
for each X such that X is a subset of I

for each Y such that Y is a subset of I
if Y and X are disjoint then

compute s := support(T, X->Y);
compute c := confidence(T, X-> Y);
if (s > minSup) AND (c > minConf) then output(X->Y);

fi
end // for

end //for

I hasm elements, hence the outer loop has2m iterations. GivenX ⊂ I,
there are2m−|X| choices to selectY , which, in average, gives us2

m

2 iterations
of the inner loop. Assuming that computations ofsupport() andconfidence()
functions require polynomial time1, we estimate the algorithmic complexity of
ARM BRUTE FORCE as

O(21.5m·P (|T |+|I|+|minSup|+|minConf |) = O(2|T |+|I|+|minSup|+|minConf |),

i.e., the running time of the brute force algorithm is exponential in the size of the
input.

1As we will see below, they, indeed, do.

2



Algorithm Apriori(T , I, minSup)
begin
F1 := {{i}|i ∈ I; supportT ({i}) ≥ minSup}; //first pass
k := 2;
repeat //main loop

Ck = candidateGen(Fk−1, k − 1); //candidate frequent itemsets
foreach c ∈ Ck do count[c] := 0; //initialize counts
foreach t ∈ T do

foreach c ∈ Ck do
if c ⊆ t then count[c] + +;

endfor
endfor
Fk = {c ∈ Ck|

count[c]
n

≥ minSup};
k := k + 1;

until Fk−1 = ∅;
return F := ∪k−1

i=1 Fi;
end

Figure 1: Apriori Algorithm for mining association rules.

Apriori Algorithm

Apriori Algorithm [1] was the firstefficient algorithm for mining association
rules.

Apriori Algorithm is an algorithm for discovery offrequent itemsetsin a dataset.

Frequent itemsets. Let I be a set of items andT be a market basket dataset.
Given a minimum support numberminSup, an itemsetX ⊆ I is afrequent item-
set in T , iff supportT (X) > minSup.

The Apriori Principle. (also known asDownward Closure Property). This
principle establishes the main driving force behind theApriori algorithm .

If X is a frequent itemset inT , thenits every non-empty subset
is also a frequent itemsetin T .

Why is this useful?Any frequent itemset discovery algorithm is essentially a spe-
cialized search algorithm over the space of all itemsets.Apriori principle allows
us toprunepotentially a lot of itemsets from consideration:if a setX is known to
NOT be a frequent itemset, thenany superset ofX will not be frequent!

Idea behind algorithm. Level-wise search: search for frequent itemsets by the
itemset size: first find all frequent itemsets of size 1, then —all frequent itemsets
of size 2, then — all frequent itemsets of size 3, and so on.

The algorithm. TheApriori algorithm consists of two parts. Figure 1 shows the
pseudocode for the algorithm itself. The algorithm, on eachstep callscandidate-
Gen() function. The pseudocode of this function is shown in Figure2.

3



Function candidateGen(F,k)
begin
C := ∅;
foreach f1, f2 ∈ F s.t. |f1| = |f2| = k do

if |f1 ∪ f2| == |f1| + 1 then
c := f1 ∪ f2; // join step
flag := true;
foreach s ⊆ c s.t. |s| = |c| − 1 do // pruning step

if s 6∈ F then flag := false;
endfor
if flag == true then C := C ∪ c;

endif
endfor
return C;

end

Figure 2: Generation of candidate frequent itemsets.

Function candidateGen(). On stepi of its execution, theApriori algorithm
discoversfrequent itemsetsof sizei. On each step starting with step 2, function
candidateGen() is called. On stepi it takes as input the list offrequent itemsets
of sizei − 1 computed on previous step and outputs the list ofcandidate frequent
itemsetsof sizei. TheApriori algorithm then checks whether the support for each
itemset returned bycandidateGen() exceedsminSup.

candidateGen() function works as follows. On stepk, it receives as input a list
Fk−1 of frequent itemsets of sizek − 1. It considers all itemsets of sizek which
can be constructed as unions of pairs of itemsets fromFk−1 (join step). candi-
dateGen() function then checks if all subsets of sizei − 1 of such unions belong
to Fk−1 (pruning step). Itemsets that pass this check are added to the list ofcan-
didate frequent itemsetsthat is eventually returned.

Properties of Apriori Algorithm

Worst-case complexity. Apriori algorithm hasO(2N ) (whereN is the size of
the input) algorithmic complexity. This is because in theworst case scenario, all
2m possible itemsets arefrequent and have to be explored.

Theheuristic efficiencyof theApriori algorithm comes from the fact that typically
observed market basket data issparse. This means that, in practice, relatively few
itemsets, especially large itemsets, will be frequent.

Data Complexity. What makesApriori an excellent data mining algorithm is its
data complexity2. The algorithm usesmin(K + 1,m) scans of the input dataset,
whereK is thesize of the largest frequent itemset.

2Data complexity of a problem is the number of Input/Output operations necessary to complete
solve the problem. This way of measuring performance of algorithms comes from database systems,
where data complexity, rather than algorithmic complexityis used to estimate the quality of query
processing algorithms.

4



Memory Footprint. Another important property ofApriori is itssmall memory
footprint . Each market baskett ∈ T is analyzed independently from others, so,
only a small number of market baskets needs to be kept in main memory at each
moment of time.

(Note to CSC 468 students: if data for Apriori is paginated anddatabase-style
buffer management is used to bring it from persistent storage into main memory,
then the memory footprint of the algorithm is O(1), as a single disk buffer is suffi-
cient to support the scan operation.)

Level-wise search. Each iteration of theApriori producesfrequent itemsetsof
specific size. If larger frequent itemsets arenot needed, the algorithm can stop
after any iteration.

Finding Association Rules

Apriori Algorithm discoversfrequent itemsetsin the market basket data. A col-
lection of frequent itemsets can be be extended to a collection of association rules
usingAlgorithm GenRules described in Figure 3.

Idea. Let f be a frequent itemset of size greater than 1. Givenf , we will consider
all possible association rules of the form

(f − α) −→ α for all α ⊂ f.

For each such rule, we will computeconfidenceT ((f − α) −→ α) and compare
it to minConf number given to us as input.

Algorithm genRules. This algorithm proceeds similarly to theApriori algo-
rithm . For each frequent itemset, first,genRules generates all rules with a single
item on the right, and finds among them those, that have confidence higher than
minConf.

After that, it usescandidateGen function to generate candidate rules more items
on the right. For each candidate rule returned bycandidateGen, the algorithm
computes its confidence and determines if the rule should be reported.

Data Formats for Mining Association Rules

Market Baskets as Sparse Vectors

In a typical scenario, given a list of itemsI and a list ofmarket baskets/transations
T = {t1, . . . , tn},

|I| >> |ti|.

That is,individual market baskets are relatively small, when compared to the set
of all possible items.

5



Algorithm genRules(F , minConf) // F - frequent itemsets
begin

foreachf ∈ F s.t. |f | = k ≥ 2 do
H1 = ∅;
foreachs ∈ f do

if confidenceT (f − {s} −→ {s}) ≥ minConf then
H1 := H1 ∪ {f − {s} −→ {s}};

endfor
apGenRules(f ,H1);

endfor
end

ProcedureapGenRules(f , Hm)
begin

if (k > m + 1) AND H 6= ∅ then
Hm+1 := candidateGen(Hm, m);
foreachh ∈ Hm+1 do

confidence := count(f)
count(f−h) ;

if confidence ≥ minConf then
output (f − h) −→ h; //new rule found

else
Hm+1 := Hm+1 − {h}

endfor
apGenRules(f ,Hm+1)
endif

end

Figure 3: Generation of association rules from frequent itemsets.

Dense Vector representation. If I is not large,T can be represented as a set of
dense binary vectors:

0 1 0 0 0 1 0 1
0 0 0 1 1 1 0 1
0 1 0 1 1 1 0 1
1 1 0 0 0 1 0 1
0 1 0 0 0 0 0 1
1 1 0 0 0 0 1 0

In the example above,|I| = 8. Each elementti ∈ T is represented as a binary
vector of size 8. E.g., the first vector indicates a market basket {i2, i6, i8}.

Advantages:

• Regular representation;

• Suitable for relational databases.

Disadvantages:

• Inefficient use of space.

Sparse Vector representation. If I is large, dense vectors will contain way
too many zeroes and, will require significant overhead when read and processed.

6



Sparse vector representationis used in this case. E.g. the dataset above can be
represented as follows:

2,6,8
4,5,6,8
2,4,5,6,8
1,2,6,8
2,8
1,2,7

Here, each vector contains information about thenon-emptycolumns in it.

Advantages:

• Efficient use of space.

• Universality.

• Relatively straightforward algorithms for simple vector operations.

Disadvantages:

• Not very suitable for relational databases.

• Variable-length records.

Relational Data as Market Baskets

Market Baskets are binary vectors. A lot of data that could use association rules
mining is relational in nature, i.e., each ”item” can have more than one value.

Example. Let I = {CSC365, CSC366, CSC480, CSC437, CSC408, CSC466, CSC481, CSC409},
a list of eight Computer Science/Software Engineering electives at Cal Poly.

In a simple market basket dataset, eachmarket basketis a student record indi-
cating which electives the student took. Consider, for example, the following six
student records:

Itemset Binary Vector
{CSC365, CSC366, CSC480} 1,1,1,0,0,0,0,0
{CSC408, CSC409} 0,0,0,0,1,0,0,1
{CSC365, CSC366, CSC408, CSC409} 1,1,0,0,1,0,0,1
{CSC480, CSC437, CSC481} 0,0,1,1,0,0,1,0
{CSC480, CSC481} 0,0,1,0,0,0,1,0
{CSC365, CSC480, CSC481} 1,0,1,0,0,0,1,0

Using this dataset, we can find patterns in classesstudents choose to take. How-
ever, we won’t find any patterns concerningstudent performance in the classes

This dataset, however, can be expanded to specify student grades in each course
they take. Assume for a moment, that a student can have one of the following
grades: A,B,C,F in the class. We can then consider the followingrelational
databasesnapshot of the data above:

7



Student CSC365 CSC366 CSC480 CSC437 CSC408 CSC466 CSC481 CSC409
1 A B B NULL NULL NULL NULL NULL
2 NULL NULL NULL NULL A NULL NULL A
3 C C NULL NULL B NULL NULL B
4 NULL NULL B C NULL NULL C NULL
5 NULL NULL A NULL NULL NULL A NULL
6 C NULL B NULL NULL NULL B NULL

Wemay be interestedin finding association rules of the sort:

Students with a C in CSC365 tended to take CSC 408 and earn
B in it.

Converting Relational Datasets into Market Basket datasets. LetR = (A1, . . . As)
be the relational schema (w.o. the primary key). For simplicity, let dom(Ai) =
{ai1, . . . , ail}. GivenR and a set of tuplesT = {t1, . . . , tn} over schemaR, we
construct a set of itemsIR and a market basket datasetT̂ = {t̂1, . . . , t̂n} as follows:

• The set of itemsIR = {(A1, a11), . . . , (A1, a1l), (A2, a21), . . . , (A2, a2l), . . . , (As, asl)}.

That is, each item in the set of itemsIR aname-value pairfrom the relational
schemaR.

• A tuple t = (b1, b2, . . . , bs) is converted into a binary vector
t̂ = (x11, . . . , x1l, x21, . . . , x2l, . . . , xs1, . . . xsl),
where,x1b1 = x2b2 = . . . xsbs

= 1 and all otherxij = 0.

Apriori Algorithm for Relational Datasets. Once we convert relational data to
market basket data, we can apply amodified version of the Apriori algorithm
to find frequent itemsets. The following modification needs to be made to the
candidateGen() function:

• When creating the list of candidate frequent itemsets for the join stage of
the Apriori Algorithm , generateonly the itemsets that have no more
than one column for each original attribute A1, . . . , As of the relational
dataset.

Example. The dataset of student transcripts described above can be transformed
to amarket basket datasetas follows.

• The setI of items is:

I = {CSC365A,CSC365B,CSC365C,CSC365F,

CSC366A,CSC366B,CSC366C,CSC366F,

CSC480A,CSC480B,CSC480C,CSC480F,

CSC437A,CSC437B,CSC437C,CSC437F,

CSC408A,CSC408B,CSC408C,CSC408F,

CSC466A,CSC466B,CSC466C,CSC466F,

CSC481A,CSC481B,CSC481C,CSC481F,

CSC409A,CSC409B,CSC409C,CSC409F}

8



• The six transcript fragments described above are transformed into the fol-
lowing six binary vectors (for simplicity, we group columnsfor the same
course):

365 366 480 437 408 466 481 409
1,0,0,0, 0,1,0,0, 0,1,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 1,0,0,0, 0,0,0,0, 0,0,0,0, 1,0,0,0
0,0,1,0, 0,0,1,0, 0,0,0,0, 0,0,0,0, 0,1,0,0, 0,0,0,0, 0,0,0,0, 0,1,0,0
0,0,0,0, 0,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,0, 0,0,0,0, 0,0,1,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 1,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 1,0,0,0, 0,0,0,0
0,0,1,0, 0,0,0,0, 0,1,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,1,0,0, 0,0,0,0

• In the sparse vector notation, the transformed dataset is represented as fol-
lows:

1,6,10
17,29
3,6,18,30
10,15,27
9,25
3,10,26

(note, thatnow the sparse dataset representationreally takes significantly
less space)

Dealing with numeric parameters. The transformation above applies to the sit-
uations when all attributes in the relational dataset arecategorical. When some
attributes arenumerical, and come withlarge domains(or are continuous), these
domains need to bediscretized:

• If the domain of an attributeA is continuous (or a large discrete numeric),
the discretization process involves selection of asmall number of value
rangesand replacement of the attributeA in the dataset with a new attribute
Ad, whose value is the discretized version ofA.

Example. Consider, for example a relational domain,

R = (Y earsWithCompany, Salary, Position,Department),

which specifies four attributes for employees of some company. Suppose that
Y earsWithCompany ranges from 0 to 30, andSalary ranges from $20,000 to
$110,000. Also, let’s assume that the domain ofPosition is {Assistant, Asso-
ciate, Manager, Senior Manager, Head} and the domain ofDepartment is
{Sales, Production, HR, Analytics}. Consider the following small dataset:

YearsWithCompany Salary Position Department
5 70,000 Manager Sales
23 105,000 Head HR
2 36,000 Assistant Production
3 60,000 Associate Analytics
16 85,000 Senior Manager Production

9



Before converting it into amarket basket dataset, we first, discretize Year-
sWithCompanyandSalary:

YearsWithComapny Range Discretized Value
0 — 3 newbie

4 — 10 average
11 — 20 veteran
20 — 30 dedicated

Salary Range Discretized Value
20,000 — 39,999 low
40,000 — 64,999 medium-low
65,000 — 84,999 medium-high
85,000 — 110,000 high

We can now, replace these two attributes in the dataset withYWCDiscr and
SalaryDiscr:

YWCDiscr SalaryDiscr Position Department
average medium-high Manager Sales

dedicated high Head HR
newbie low Assistant Production
newbie medium-low Associate Analytics
veteran high Senior Manager Production

This dataset contains four categorical attributes and can be transformed into a
market basket datasetas described above.

Discretizing categorical attributes. Analysts may choose to discretize certain
categorical attributes to provide better/simpler views oftheir data.

For example, we could choose to mergeA andB grades into a single attribute
for each course. This would reduce the size of the dataset (going from 32 columns
to 24) and would potentially uncover new association rules.

References

[1] Agrawal R, Imielinski T, Swami AN. ”Mining Association Rules between
Sets of Items in Large Databases.”in Proc. ACM SIGMOD. June 1993,
22(2):207-16.

10


