
Towards a Query Language for Multihierarchical XML:
Revisiting XPath

Ionut E. Iacob
∗

Department of Computer Science
University of Kentucky

Lexington, KY, USA

eiaco0@cs.uky.edu

Alex Dekhtyar
†

Department of Computer Science
University of Kentucky

Lexington, KY, USA

dekhtyar@cs.uky.edu

ABSTRACT
In recent years it has been argued that when XML encodings be-
come complex, DOM trees are no longer adequate for query pro-
cessing. Alternative representations of XML documents, such as
multi-colored trees [7] have been proposed as a replacement for
DOM trees for complex markup. In this paper we consider the
use of Generalized Ordered-Descendant Directed Acyclic Graphs
(GODDAGs) for the purpose of storing and querying complex do-
cument-centric XML. GODDAGs are designed to store multihier-
archical XML markup over the shared PCDATA content. They sup-
port representation of overlapping markup, which otherwise can-
not be represented easily in DOM. We describe how the seman-
tics of XPath axes can be modified to define path expressions over
GODDAG, and enhance it with the facilities to traverse and query
overlapping markup. We provide efficient algorithms for axis eval-
uation over GODDAG and describe the implementation of the query
processor based on our definitions and algorithms.

1. INTRODUCTION
XML has become a popular approach to storage and transfer of

diverse data because of its simplicity and transparency, as well
as because of wide availability of (free) tools for working with
it. Availability of open-source XML-related standards allows soft-
ware developers build XML-enabled applications in a straightfor-
ward manner: XML files are parsed using a combination of SAX
and DOM parsers, constructed memory-resident DOM trees are ac-
cessed from applications via DOM API calls. More complex XML
management tasks involve the use of XPath and/or XQuery expres-
sions for querying the content of DOM trees and XSLT for con-
verting the content/structure of the tree, usually, for the purpose of
visualizing the data. For simple XML data, XPath/XQuery over
DOM Trees provide efficient and convenient way for querying.

∗Work supported, in part, by the NEH grant RZ-20887-02.
†Work supported, in part, by the NSF grant ITR-0219924 and the
NSF grant ITR-0325063.

Copyright is held by the author/owner.
Eighth International Workshop on the Web and Databases (WebDB 2005),
June 16-17, 2005, Baltimore, Maryland, USA.
.

Figure 1: A fragment of a letter detailing the proposed Civil
Rights Program to the members of President Eisenhower’s
Cabinet.

However, straightforward approaches to organizing XML for query-
ing might yield unsatisfactory solutions when complex markup is
considered. In [7] Jagadish et al. observed that querying XML data
in the presence of several hierarchies for encoding features of the
same objects can be done more efficiently if alternative data struc-
tures are used in place of a set of independent DOM trees, one for
each of the hierarchies. Jagadish et al. proposed a data structure
called multi-colored tree (MCT) for storing such markup and dis-
cussed efficient query evaluation strategies.

The approach of [7] was designed with data-centric XML in
mind. The multicolored tree structure is built on top of individ-
ual XML nodes. This allows hierarchies of different “colors” to
share content of some of the nodes. When document-centric XML
is considered, however, there is an additional dimension, not cap-
tured by MCTs: the sharing of information in the hierarchies oc-
curs at the level of content, rather than XML elements. Indeed,
typically, document-centric XML documents are built by starting
with a text and introducing various markup on top of it. When
more than one hierarchy is used to encode features of a text, often
the scopes of different markup elements overlap. This is illustrated
on the following example.

EXAMPLE 1. Consider a fragment of [8], shown in Figure 1.
We describe two markup hierarchies for this document. First hi-
erarchy describes, using elements <p> (paragraph), <sentence>
and <w> (word), the structure of the text of the document. Our sec-
ond hierarchy uses elements <page> and <line> to describe the
physical layout of the text. The (somewhat simplified) correspond-
ing XML encodings of this fragment are shown in Figures 2.(a) and
2.(b). Examination of the scopes of the XML elements in these fig-
ures reveals numerous overlapping conflicts. In particular, we men-
tion the conflict between the scope of the <page no="1"> element
and the content of both <p> and <sentence no="14"> elements.
Similarly, the <w> element around the word "fundamental" over-



laps both <line no="1"> and <line no="2"> elements of <page
no="2">. Overall, even this simple fragment, described using just
two hierarchies contains six pairs of elements with overlapping
content.

Overlap in content of elements means that the markup presented
in Figure 2 cannot be stored in a single XML document/DOM tree
in a straightforward manner. As they lack facilities to store over-
lapping markup, it also cannot be stored in a single MCT. At the
same time, storing each hierarchy in a separate DOM tree is ineffi-
cient from the perspective of query processing. For example, a user
query

Find all sentences completely or partially located
on page 1, which contain the word “charges”

requires navigation through both text structure and physical loca-
tion markup. Similar to the cases considered in [7], executing such
a query as a join is inefficient. To make matters worse, the full an-
swer to this query must include sentence number 14, only partially
located on page 1. This means that the abovementioned query is
not expressible in XPath (or XQuery, for that matter) over the set
of the two encodings in Figure 21.

In [9], Sperberg-McQueen and Huitfeldt have introduced Gener-
alized Ordered-Descendant Directed Acyclic Graphs (GODDAGs),
a data structure for storing concurrent/ multihierarchical markup.
A GODDAG combines DOM trees of individual XML hierarchies
together by “tying” them at the top, root level, and at the bottom,
content level. In [9], Sperberg-McQueen cite the need for appropri-
ate mechanisms for building GODDAGs and querying data stored
in them. The former problem had been addressed in [6]. In this
paper, we adopt GODDAG (formally described in Section 2) as the
data structure for storing concurrent markup. We then proceed to:
(i) define the semantics of XPath axes over multiple hierarchies in
GODDAG structures (Section 3); (ii) enhance XPath syntax and
semantics with constructs for capturing overlapping markup (Sec-
tion 3); (iii) develop and implement algorithms for axis evaluation
over GODDAG2 and conduct a preliminary study of the efficiency
of enhanced XPath over GODDAG as the means of querying mul-
tihierarchical, overlapping markup (Section 4).

This paper describes the first steps toward a query language for
document-centric XML data with overlapping hierarchies. We give
an extension of XPath, as a navigational language through a data
structure that we consider appropriate for representing multihierar-
chical markup. The next step, currently under development, would
be to use this XPath extension in an XQuery language extension for
querying multihierarchical XML documents.

2. DATA STRUCTURE FOR OVERLAPPING
HIERARCHIES

We identify three basic principles for choosing a data structure
for overlapping hierarchies: (i) we want to preserve individual hier-
archies inside the complete document representation, (ii) we want
to easily navigate from one structure to another, and (iii) we want
to capture relationships between elements in different hierarchies.

Is is a fact that complex queries are likely to be expensive ([3,
2]). In [7] it is pointed out that, even for complex hierarchies, a
tree-like structure is desirable due its relative navigation simplicity.
1We note that it is possible to represent the desired query in XQuery
by modifying the representation in Figure 2 in a number of ways,
e.g., with ID/IDREF attributes, or with <leaf> elements represent-
ing GODDAG leafs described elsewhere in the paper.
2Due to the lack of space we will not present the algorithms here.
The details can be found in [5].

We start by introducing concurrent markup hierarchies and dis-
tributed XML documents. A concurrent markup hierarchy (CMH)
is a collection of schema definitions (DTDs, XSchemas, etc. . . )
that share a single (root) element name, and only it3. Individual
schemas are called hierarchies. Given a CMH C = 〈T1, . . . , Tk〉,
a distributed XML document (DXD) D over C is a collection of
XML documents (d1, . . . , dk), one for each hierarchy of C, such
that all documents have the same PCDATA content4 Individual
documents di are called components of D. They are not expected
to be valid w.r.t. their schema Ti, but must contain markup only
from Ti. This separation of markup in a DXD addresses principle
(i) above: each document preserves the structure of the specific en-
coding. Two XML documents in Figure 2 show us an example of
a DXD with two document components: d1 on top (correspond-
ing to a “text” hierarchy), and d2 at the bottom (corresponding to
a “physical layout” hierarchy). As clear from this example, DXDs
can incorporate within them overlapping markup.

Representing DXD components as individual independent DOM
trees is inconvenient, as illustrated in [7]. Instead, we use a struc-
ture called General Ordered-Descendant Directed Acyclic Graph
(GODDAG), originally introduced by Sperberg-McQueen and Huit-
feldt in [9] precisely for the purpose of storing concurrent markup.
Informally, a GODDAG for a distributed XML document D can
be thought of as the graph that unites the DOM trees of individ-
ual components of D, by merging the root node and the text (PC-
DATA). Because of possible overlap in the scopes of XML ele-
ments (text nodes) from different component documents, the un-
derlying content of the document is stored not in text nodes, but
in a special new type of node called leaf node. In a GODDAG,
leaf nodes are children of the text nodes, and they represent a con-
secutive sequence of content characters that is not broken by an
XML tag from any of the components of the distributed XML doc-
ument. While each component of D will has its own text nodes
in a GODDAG, the leaf nodes will be shared among all of them.
As a consequence, leaf nodes have multiple parents: one in each
component of D.

The GODDAG for the DXD in Figure 2 is illustrated in Figure
3. In the figure, nodes in the “text” hierarchy are on the top part,
whereas nodes for the “physical layout” hierarchy are at the bottom.
Leaf nodes are represented in the middle as rectangles correspond-
ing to the PCDATA they cover. Element nodes are explicitly drawn
with names and attribute values. Text nodes are symbolized by T in
a circle. To easily identify the nodes, we put a unique label next to
each node. Note here, for example, that the word “fundamental” is
broken into two leaf nodes: L12:“funda” and L13:“mental”. This
allows us to represent the content of the appropriate <w> element
(116) in the first hierarchy as {L12, L13}, while including L12 and
L13 in the scope of two different <line> elements (29 and 211
respectively).

To define GODDAG formally, we need to introduce some nota-
tion. For an XML document d we let root(d) denote the root ele-
ment of d and nodes(d) – the set of all nodes in DOM of d. For a
node x ∈ nodes(d) we let string(x) be the PCDATA content of x
(as defined in XPath [1]). We also set start, end : nodes(d) → N
to return the offset positions in string(root(d)) of start tag and
end tag respectively for a node x ∈ nodes(d). If x is a text node,
then start(x), end(x) denote the start offset and end offset respec-
tively. For a distributed document D we let leaves(D) represent

3Namespaces can be used to distinguish elements from different
hierarchies with the same name, but this fact is not important for
the scope of this paper.
4The order of characters in the PCDATA content of all documents
must be the same.



<doc id="CP56483">
...
<p>
<sentence no ="13"> <w>Where</w> <w>there</w> are

<w>charges</w> that by one means of another the vote
is being denied, we must find out all of the
facts -- the extent, the methods, the results.

</sentence>
<sentence no="14">The same is true of substantial

<w>charges</w> that unwarranted economic of other
pressures are being applied to deny
<w>fundamental</w> <w>rights</w> <w>safeguarded</w>
by the Constitution and laws of the United States.

</sentence>
</p>
...</doc>

<doc id="CP56483">
...
<page no="1">
<line no="31"Where there are charges that by

one means of another the vote</line>
<line no="32">is being denied, we must find out

all of the facts -- the extent, the</line>
<line no="33">methods, the results. The same is true of

substantial chargers that</line>
</page>
<page no="2">
<line no="1">unwarranted economic of other pressures are

being applied to deny funda</line>
<line no="2">mental rights safeguarded

by the Constitution and laws of the United</line>
<line no="3"> States.
...
</page> ...</doc>

(a) (b)

Figure 2: Encoding of the fragment from Figure 1: (a) text structure, (b) physical location.

the set of all leaf nodes in D and we extend the domain of functions
string, start, and end over the leaves(D) set. For leaf nodes
these functions are defined in the same way as for text nodes.

DEFINITION 1. Let D = (d1, . . . , dk) be a distributed XML
document. A GODDAG of D is a directed acyclic graph (N, E)
where the sets of nodes N and edges E are defined as follows:
• N = ∪k

i=1nodes(di) ∪ leaves(D)
• E = ∪k

i=1{(x, y)|x, y ∈ nodes(di)∧
x is the parent of y}∪

∪k
i=1{(x, y)|x ∈ nodes(di) is a text node,

y ∈ leaves(D)∧
start(x) ≤ start(y) < end(y) ≤ end(x)}

The GODDAG data structure solves nicely the problem of navi-
gation between CMH structures (principle (ii)): all hierarchies are
connected via the common root node and common leaf nodes. The
data structure also captures relationships among features in differ-
ent structures. For instance, in the GODDAG in Figure 3, we can
find all sentences partially or totally located on page 1: from <page

no="1"> (node 21) we navigate down and find all leaf nodes it con-
tains (leaves L1 to L10); then we navigate up in the other hierarchy
and find all <sentence> ancestors for these leaf nodes (nodes 13
and 14). In fact, as we show below, the semantics of all standard re-
lationships between elements from different hierarchies (ancestor,
descendant, overlapping, following, preceding) can be expressed in
terms of relationship between the corresponding leaf nodes.

3. QUERYING DISTRIBUTED XML DOC-
UMENTS

XPath is a language for addressing parts of an XML document. It
is intensively used as part of some XML query languages (XQuery),
and can be used itself to query XML documents. In fact, in XQuery
queries, XPath expressions are responsible for traversing the un-
derlying XML document model (DOM tree) to discover requested
XML nodes.

We argue in [5] that even simple queries are hard to express in
XPath over representations of concurrent hierarchies that involve
markup fragmentation or empty elements to overcome markup con-
flicts. In this section we show that when distributed XML docu-
ments are represented in GODDAG structures, we can express such
queries as path expressions in straightforward ways. In addition,
we show that individual components of path expressions (we con-

T TTTT TTTT

T

TT TTT T

0

Where there are charges ... vote is ... the methods ... results. The ... charges that unwarranted ... fundamental ... United States.

<w> <w> <w> <w>

<sentence no="13">
<sentence no="14">

<p>

<line no="31"> <line no="32"> <line no="33"> <line no="1"> <line no="2"> <line no="3">

<page no="1"> <page no="2">

<doc id="CP56483">

13

1614 17

15 18

12

11

111

115

112
110

23

19

22

25

24

21

26 29

21027 212 214

118

116

117

213

28

211

L1 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15L2 L3

<w>
113

114

Figure 3: A GODDAG for the distributed document DXD in
Figure 2

centrate on axes) have natural semantics over GODDAG, a seman-
tics that specializes to XPath over DOM semantics when single-
component documents are considered. We start by discussing how
individual XPath axes can be defined in GODDAGs then we intro-
duce formal definitions of XPath components over GODDAG.

3.1 Path Expressions Over GODDAG
Recall that XPath uses a tree of nodes model to represent an

XML document. There are seven types of nodes, the root node (a
unique node in an XML document), element, text, attribute, names-
pace, processing-instruction, and comment nodes. The main syn-
tactical construction of XPath is expression. An expression oper-
ates on a context node and manipulates objects of four kinds: node-
set, boolean, string, and numeric.

The instrument for addressing sets of nodes in a document is the
location path composed of one or more steps. Each step consists
of an axis, a nodetest and zero or more predicates. An axis de-
termines the direction of traversal from the current (context) node,
while nodetests and predicates filter nodes that do not match them.
A location path syntax can be summarized as follows (comprehen-
sive syntax is given in [1]):

locationPath := step1/step2/.../stepn

step := axis::node-test predicate*

predicate := [expression]



d1
d2

root

p s

descendant following

w

Figure 4: Descendant and following axes in GODDAG.

The main syntactical construction for a step evaluation is axis: for
each node in the current context node set an axis is evaluated to a
set of nodes according to the respective axis definition. The set of
nodes from axis evaluation is filtered by the node-test (basically a
node type test or a name test for element nodes) and expression re-
sult (evaluated to true or false) in the context of each node of axis
evaluation set (axis plays the selection role, node-test and predi-
cate play the filtering role). XPath uses 13 axes to address nodes
in a document: ancestor, ancestor-or-self, attribute, child, descen-
dant, descendant-or-self, following, following-sibling, namespace,
parent, preceding, preceding-sibling, and self.

We illustrate the problem of definition of XPath axes over a
GODDAG in the following examples. In the context of our exam-
ple from Figures 1 and 2, consider the query “Find all sentences
completely inside page 1”. If <page> and <sentence> markup
were in the same hierarchy, we would have expressed this query
using the following XPath expression:

//page[attribute::no="1"]/descendant::sentence

But in our GODDAG (Figure 3), they are not. Yet, the representa-
tion mechanism should not affect our understanding of the relation-
ship between pages and sentences. By definition of the descendant
axis, a <sentence> node is a descendent of a <page> node if it is
located in the <page> node’s subtree. However, we can describe a
descendant relationship in a different way:

a node x is a descendant of node y iff the content range
of x is completely included in the content range of y.

When considered over DOM trees, these two definitions are (al-
most) equivalent. The key difference between them is that while
the former definition is DOM-specific, the latter is not. In Figure 4
we show the latter definition applied to GODDAG. Here, two com-
ponents d1 and d2 of a DXD are shown. Node p in component d1

has content that subsumes completely the content of node s from
component d2. By applying the definition above, we can state that
s is a descendant of p in the given DXD. Similarly, because the an-
cestor relationship is the inverse of the descendant, we can use the
same idea to state that p is an ancestor of s in the DXD.

We can use similar intuition to redefine following and preceding
axes. Indeed, a node x follows a node y iff the entire PCDATA
content of x is located after the entire PCDATA content of y in a
DOM tree. This statement is, again, independent on the DOM tree
structure (as opposed to the definition of the following axis, which
relies on the document order), and therefore can be transferred to
GODDAG, as illustrated in the Figure 4. Node w of component d2

has content that lies after the content of node p, hence, we can state
the w follows p and, conversely, p precedes w.

d1
d2

root

p s

preceding−overlapping

following−overlapping

overlapping

Figure 5: Axes for overlap in GODDAG.

At the same time, not all axes can be redefined in such a way,
in particular, child and parent cannot transcend the boundaries of
a single component in a way descendant and ancestor do. This
is because unlike the notion of descendant, childhood-parenthood
relations are tied to tree structures: a node x is a child of a node
y iff there is an edge from y to x. Similarly, preceding-sibling
and following-sibling axes rely on the existence of edges between
the nodes in the DOM tree, not just on the position of the content.
These axes, as well as self will not be extended beyond individual
components of the distributed document.

One more observation can be made. Given a node x of a DOM
tree, the five axes ancestor, descendant, self, preceding and follow-
ing partition the entire DOM tree into five disjoint sets of nodes:
that is, every node in the DOM tree will belong to exactly one of
these axes as traversed from x. This property, however, does not
hold in GODDAG: as shown in Section 2, there are GODDAG
nodes with overlapping content (See Figure 5). Traversing the
GODDAG using any of the five axes above will never yield any
node that overlaps the context node in content. At the same time,
as have been illustrated, queries over GODDAG require comput-
ing overlap. To accommodate for this need, we consider enhanc-
ing XPath with three new axes: preceding-overlapping, following-
overlapping and overlapping. Intuitive meaning of these axes, as
illustrated in Figure 5 is quite straightforward: x is in the result
of applying preceding-overlapping axis to y iff x and y overlap in
scope and x starts before y. In this case, y will be in the result
of following-overlapping applied to x. The overlapping axis is the
union of preceding-overlapping and following-overlapping.

We can now proceed to give formal definitions to XPath compo-
nents over GODDAG, including the enhances apparatus to support
markup overlap.

3.2 XPath over GODDAG
Let D be a distributed XML document over a concurrent XML

hierarchy C = 〈T1, . . . , Tk〉. We define 11 new XPath axes, over
the distributed document D, in the context of a node x ∈ nodes(D):
xancestor, xdescendant, xancestor-or-self, xdescendant-or-self, xfol-
lowing, xpreceding, following-overlapping, preceding-overlapping,
overlapping, xancestor-or-overlapping, and xdescendant-or-over-
lapping. The first six axes are versions of the corresponding XPath
axes extended to GODDAG. The remaining five axes do not have
analogs in XPath.



Xancestor/xdescendant axes are defined using superset/ subset
relation on the content of the nodes, represented via a set of leaf
nodes in the GODDAG. To define xfollowing and xpreceding axes,
we use the relative positions of nodes in the GODDAG. However,
we observe that there is no total document order over a GODDAG:
overlapping markup will be incomparable.

DEFINITION 2. The following new axes are defined:

1. xancestor ::= ancestor(x) ∪
{y ∈ nodes(D−docD(x))| start(y) ≤ start(x) ≤ end(x) ≤
end(y)}.

2. xdescendant ::= descendant(x) ∪ {y ∈ nodes(D −
docD(x))| start(x) ≤ start(y) ≤ end(y) ≤ end(x)}.

3. xancestor−or−self ::= xancestor(x) ∪ {x}.

4. xdescendant−or−self ::= xdescendant(x) ∪ {x}.

5. xfollowing ::= following(x) ∪
{y ∈ nodes(D − docD(x))| start(y) ≥ end(x)}.

6. xpreceding ::= preceding(x) ∪
{y ∈ nodes(D − docD(x))| end(y) ≤ start(x)}.

7. following−overlapping ::= {y ∈ nodes(D)| start(x) <
start(y) < end(x) < end(y)}.

8. preceding−overlapping ::= {y ∈ nodes(D)| start(y) <
start(x) < end(y) < end(x)}.

9. overlapping ::= following−overlapping(x)
∪ preceeding−overlapping(x)}.

10. xancestor−or−overlapping ::= xancestor(x) ∪
overlapping(x).

11. xdescendant−or−overlapping ::= xdescendant(x) ∪
overlapping(x).

We give some examples of the extended axes for the GODDAG
shown in Figure 3. (we use node labels to identify nodes in the
graph)

(A) xdescendant(21) = {22, 24, 26, 23, 25, 27, 14, 16, 17, 19,
110, 13, 15, 18, 12, 112, 114, 113}. Note 21 corresponds to the <page
no="1"> markup. The xdescendants of this node are all its descen-
dants in the “physical layout” component (lines 31, 32 and 33 and
corresponding text nodes) as well as the contents of sentence 13
(nodes 12,13,15,18 and the corresponding text nodes). In addition,
parts of sentence 14 (node 113 and text nodes 112 and 114) also
are xdescendants of 21. At the same time, sentence 14 itself is not
an xdescendant of page 1.

(B) following−overlapping(26) = {111, 115}
Node 26 represents <line no="33"> markup from page 1. The
scope of its content is leaf nodes L7—L10. The scope of node
111 (<sentence no="14"> is L8—L15: because it starts after the
scope of node 26 starts and ends after the scope of node 26 ends,
it belongs to the result of evaluation of the following-overlapping
axis. Incidently, text node 115 also overlaps node 26 on the right,
thus it is added to the result as well.

Remark. We note that Definition 2 allows a node x to be both
an xdescendant and an xancestor of a node y: if start(x) =
start(y), end(x) = end(y) and they are in different documents.

Proposed axes allow us to express queries to multihierarchical
(distributed) documents in a straightforward manner. Consider, for
example, the following queries:

(Q1): Find all sentences completely located on page 2;
(Q2): Find all words located on two lines;
(Q3): Find all sentences completely or partially located on
page 1 of the document, that contain the word “charges”;
(Q4): Find all occurrences of the word “Constitution” after
page 1.
Table 1 shows the path expressions for these queries.

The algorithms for evaluation of the newly defined axes are given
in [5].

4. EXPERIMENTAL RESULTS
We have fully implemented in Java an extension of XPath lan-

guage that includes all the axes described in Definition 2. We
call this processor GOXPath. GOXPath is a main-memory proces-
sor: all queries are processed over the memory-resident GODDAG
structure, without addressing persistent storage. In this section we
describe our preliminary study of the efficiency of this processor.

We report the results of four tests. The goals of the experiments
were: (a) to compare the evaluation of extended XPath axes over
documents with 2, 3, 4, 5, and 6 hierarchies; (b) to compare evalu-
ation of axes over multihierarchical documents with different sizes
(ranging from 5,000 nodes up to 500,000 nodes); (c) to compare
evaluation of queries of different lengths; (d) to compare GOX-
Path performance with the execution of equivalent XPath queries
(in terms of number of nodes manipulated) by Xalan5 and Dom4j6

processors. We emphasize that the goal of part (d) was not to prove
that GOXPath is faster than certain XPath processors. Rather we
want to show that on similar workloads GOXPath exhibits compa-
rable performance. The tests were run on a Dell GX240 PC with
1.4Ghz Pentium 4 processor and 256 Mb main memory. The data
input for the first two experiments was a distributed XML docu-
ment obtained by multiplying the XML samples shown in Figure 2
enhanced with more markup when more than two hierarchies were
used. The documents sizes ranged from 2MB up to 40MB on disk.
Each query was evaluated four times, the average time was plotted.

In the first experiment we used 5 documents with 2, 3, 4, 5, and
6 hierarchies and of approximately 50, 55, 60, 65, and 70 thou-
sand of nodes respectively. On these document instances we eval-
uated two queries, /descendant::page/xdescendant::*, and
/descendant::page/overlapping::*, and the graphs of run-
ning time are shown in Figure 6 (a). The experimental results sug-
gest that GOXPath performances are not significantly influenced
by the number of hierarchies, but rather by the number of nodes
that are manipulated (in the case of xdescendant axis the number
of nodes slightly increases with the number of hierarchies, whereas
for overlapping the number of nodes is approximately the same).

In the second experiment we studied the exaluation of extended
axes for documents of different size (we used two hierarchies in
this experiment). We ran two queries, /descendant::page/
xdescendant::* and /descendant::page/overlapping::*,
on documents of 5 up to 5,000 thousand nodes. The experimental
results in Figure 6 (b) suggest linear dependence of axis evaluation
on document size [5].

In the third experiment we tested GOXPath performance on queries
of different length. We used two sets of eight queries each. Each
query in the first set had the prefix /descendant::page//, and
continued with 1 up to 8 overlapping::* location steps. Simi-
larly, each query in the second set had a prefix /descendant::page/,
and continued with 1, up to 8 xdescendant-or-self::* loca-
tion steps (note that approximately the same number of nodes were

5http://xml.apache.org/xalan-j/
6http://www.dom4j.org



Query Path Expression
Q1 /xdescendant::page[@no="2"]/xdescendant::sentence
Q2 /xdescendant::word[overlapping::line]
Q3 /xdescendant::page[@no="1"]/xdescendant-or-overlapping::sentence[descendant::w[string(.)="charges"]]
Q4 /xdescendant::page[@no="1"]/xfollowing::w[string(.)="Constitution"]

Table 1: Using newly defined axes to express queries over multihierarchical XML documents.

2 2.5 3 3.5 4 4.5 5 5.5 6
500

550

600

650

700

750

800

850

900

950

1000

T
im

e 
[m

s]

Number of Hierarchies

XDESCENDANT and OVERLAPPING axes evaluation on different number of hierarchies

overlapping
xdescendant

0 50 100 150 200 250 300 350 400 450 500
0

500

1000

1500

2000

2500

3000

T
im

e 
[m

s]

Document size [Thousand nodes]

XDESCENDANT and OVERLAPPING axes evaluation on different document sizes

xdescendant
overlapping

(a) (b)

1 2 3 4 5 6 7 8
500

1000

1500

2000

2500

3000

3500

4000

T
im

e 
[m

s]

Query size [number of location steps]

XDESCENDANT and OVERLAPPING axes evaluation on different query sizes

overlapping
xdescendant

1 4 8
0

200

400

600

800

1000

1200

1400

1600

1800

2000

T
im

e 
[m

s]

DESCENDANT axis evaluation on different query length and different processors

Query size [number of location steps]

GOXPath
Xalan
Dom4j

(c) (d)

Figure 6: Experimental results.

processed at each step). The results shown in Figure 6 (c) clearly
indicate linear dependence of query evaluation time on query size.

Finally, the last experiment compared the running time of GOX-
Path and XPath processors (Xalan and Dom4j) on workloads of
comparable size (similar queries and the same number of nodes to
be processed). We used documents with approximately 50 thou-
sand nodes, two hierarchies for GOXPath, and markup fragmenta-
tion for Xalan and Dom4j. The same three queries were evaluated
by each processor: /descendant::page/descendant::*, and
the same as the preceding but ending with four, respectively eight
descendant::* location steps. The test results are shown in Fig-
ure 6 (d) and demonstrate that GOXPath has similar performances
as Xalan and Dom4j.

The experiments conducted here are preliminary and a more ex-
tensive testing is currently underway. But even these experiments
show that our XPath implementation over GODDAG is efficient
enough to be used in practice (and in fact, it is used as part of a
larger suite of tools)[4].

5. REFERENCES
[1] XML Path Language (XPath) (Version 1.0).

http://www.w3.org/TR/xpath, Nov 1999.
[2] G. Gottlob, C. Koch, and R. Pichler. The complexity of XPath query

evaluation. In Proceedings of PODS, San Diego, CA., pages 179–190,
June 2003.

[3] G. Gottlob, C. Koch, and R. Pichler. XPath query evaluation:
Improving time and space eficiency. In Proceedings of ICDE’03,
Bangalore, India., pages 379–390, Mar 2003.

[4] I. E. Iacob and A. Dekhtyar. A framework for processing complex
document-centric XML with overlapping structures. In ACM
SIGMOD Conference, 2005. Demo, accepted.

[5] I. E. Iacob and A. Dekhtyar. Queries over Overlapping XML
Structures. Technical Report TR 374-05, U. of Kentucky, CS Dept.,
March 2005.
http://dblab.csr.uky.edu/∼eiaco0/publications/TR374-05.pdf.

[6] I. E. Iacob, A. Dekhtyar, and K. Kaneko. Parsing Concurrent XML. In
Proceedings WIDM, pages 23–30, November 2004.

[7] H. V. Jagadish, L. V. S. Lakshmanan, M. Scannapieco, D. Srivastava,
and N. Wiwatwattana. Colorful XML: one hierarchy isn’t enough. In
Proceedings SIGMOD, pages 251–262. ACM Press, 2004.

[8] M. M. Rabb. The civil rights program - letter and statement by the
attourney general. The Dwight D. Eisenhower Library, Abilene, KS,
http://www.eisenhower.utexas.edu/dl/Civil Rights Civil
Rights Act/CivilRightsActfiles.html, April 10 1956.

[9] C. M. Sperberg-McQueen and C. Huitfeldt. GODDAG: A Data
Structure for Overlapping Hierarchies. In DDEP/PODDP, Munich,
pages 139–160, Sept. 2000.


