A Framework for Management of Concurrent
XML Markup *

Alex Dekhtyar, Ionut E. Iacob

Department of Computer Science
University of Kentucky
Lexington, KY 40506
dekhtyar@cs.uky. edu; eiaco0@cs.uky.edu

Abstract. The problem of concurrent markup hierarchies in XML en-
codings of works of literature has attracted attention of a number of
humanities researchers in recent years. The key problem with using con-
current hierarchies to encode documents is that markup in one hierarchy
is not necessarily well-formed with respect to the markup in another
hierarchy. The proposed solutions to this problem rely on the XML ex-
pertise of the editors and their ability to maintain correct DTDs for
complex markup languages. In this paper, we approach the problem of
maintenance of concurrent XML markup from the Computer Science
perspective. We propose a framework that allows the editors to concen-
trate on the semantic aspects of the encoding, while leaving the burden
of maintaining XML documents to the software. The paper describes the
formal notion of the concurrent markup languages and the algorithms
for automatic maintenance of XML documents with concurrent markup.

1 Introduction

The problem of concurrent markup hierarchies has recently attracted the at-
tention of a number of humanities researchers [13, 6, 15]. This problem typically
manifests itself when a researcher must encode in XML a large document (book,
manuscript, printed edition) with a wide variety of features. A concurrent hi-
erarchy is formed by a subset of the elements of the markup language used to
encode the document. The elements within a hierarchy have a clear nested struc-
ture. When more than one such hierarchy is present in the markup language,
the hierarchies are called concurrent.

A typical example of concurrent hierarchies is the XML markup used to en-
code the physical location of text in a printed edition: book, page, physical line,
vs. the markup used to encode linguistic information about the text: sentence,

* This work has been supported in part by NSF ITR grant 0219924. In addition, the
work of the second author has been supported in part by NEH grant RZ-20887-02.
The manuscript image [1] appearing in this paper was digitized for the Electronic
Boethius project by David French and Kevin Kiernan and is used with permission
of the British Library Board.

phrase, word, letter. The key problem with using concurrent hierarchies to en-
code documents is that markup in one hierarchy is not necessarily well-formed
with respect to the markup in another hierarchy.

The study of concurrent XML hierarchies for encoding documents is related
to the problem of manipulation and integration of XML documents. However,
most of the research on XML data integration addresses the problem of integrat-
ing heterogeneous, mostly data-centric XML provided by various applications
([4,9,10,8]). In our case, the data to be integrated has a common denominator:
the document content, and the XML encodings are document-centric. Also, the
features of the document to be marked up are not (in most cases) heterogeneous,
but they might be conflicting in some instances.

Management of concurrent markup has been approached in a few different
ways. The Text Encoding Initiative (TEI) Guidelines [13] suggest a number
of solutions based on the use of milestone elements (empty XML elements)
or fragmentation of the XML encoding. Durusau and O’Donnell [6] propose a
different approach. They construct an explicit DTD for each hierarchy present
in the markup. Then they determine the ”least common denominator” in the
markup — the units of content inside which no overlap occurs, in their case,
words. They associate attributes indicating the XPath expression leading to the
content of each word element for each hierarchy. Other scholars have proposed
the use of non-XML markup languages that allow concurrent hierarchies [7].

In their attempts to resolve the problem of concurrent hierarchies, both [13]
and [6] rely on the human editor to (i) introduce the appropriate solution to the
XML DTD/XSchema, and (ii) follow it in the process of manual encoding of the
documents. At the same time, [6] emphasizes the lack of software support for
the maintenance of the concurrent markup, which makes, for example, adhering
to some of the TEI solutions a strenuous task. While some recent attempts have
been made to deal with the problem of concurrent markup from a computer
science perspective [14, 15], a comprehensive solution has yet to be proposed.

This paper attempts to bridge the gap between the apparent necessity for
concurrent markup and the lack of software support for it by proposing a frame-
work for the creation, maintenance and querying the concurrent XML markup.
This framework relies on the following;:

— Separate DTDs for hierarchies;

Use of a variant of fragmentation with virtual join suggested by TEI Guide-
lines [13] to represent full markup;

— Automatic maintenance of markup;

— Use of a database as XML repository.

The ultimate goal of the proposed framework is to free the human editor from
the effort of dealing with the wvalidity and well-formedness issues of document
encoding and to allow him or her to concentrate on the meaning of the encoding.
This goal is achieved in the following way. Durusau and O’Donnell [6] note the
simplicity and clarity of DTDs for individual concurrent hierarchies, as opposed
to a unified DTD that incorporates all markup elements. Our approach allows

the editor to describe a collection of such simple DTDs without having to worry
about the need to build and maintain a "master” DTD. At the same time,
existence of concurrent DTDs introduces the need for specialized software to
support the editorial process drive it by the semantics of the markup. This
software must allow the editor to indicate the positions in the text where the
markup is to be inserted, select the desired markup, and take record the results.

In this paper we introduce the foundation for such software support. In Sec-
tion 2 we present a motivating example based on our current project. Section
3 formally defines the notion of a collection of concurrent markup languages.
In Section 4 we present three key algorithms for the manipulation of concurrent
XML markup. The Merge algorithm builds a single master XML document from
several XML encodings of the same text in concurrent markup. The Filter algo-
rithm outputs an XML encoding of the text for an individual markup hierarchy,
given the master XML document. The Update algorithm incrementally updates
the master XML document given an atomic change in the markup.

This paper describes the work in progress. A major issue not addressed in here
is the database support for multiple concurrent hierarchies in our framework.
This problem is the subject of ongoing research.

2 Motivating Example

Over the past few years researchers in the humanities have used XML extensively
to create readable and searchable electronic editions of a wide variety of literary
works [11,12,6]. The work described in this paper originated as an attempt to
deal with the problem of concurrent markup in one such endeavor, The ARCH-
Way Project, a collaborative effort between Humanities scholars and Computer
Scientists at the University of Kentucky. This project is designed to produce
electronic editions of Old English manuscripts. In this section, we illustrate how
concurrent markup occurs in ARCHWay.

Building electronic editions of manuscripts. Electronic editions of Old English
manuscripts [11,12]combine the text from a manuscript (both the transcript
and the emerging edition), encoded in XML using an expressive array of fea-
tures (XML elements), and a collection of images of the surviving folios of the
manuscript. The physical location of text on the surviving folios, linguistic in-
formation, condition of the manuscript, visibility of individual characters, paleo-
graphic information, and editorial emendations are just some of the features that
need to be encoded to produce a comprehensive description of the manuscript.
Specific XML elements are associated with each feature of the manuscript.

Concurrent hierarchies and conflicts. Most of the features have explicit scopes:
the textual content (of the manuscript) that the feature relates to, be it the text
of a physical line, or a line of verse or prose, or manuscript text that is missing
due to a damage in the folio. Unfortunately, the scopes of different features
often overlap, resulting in non-well-formed encoding (we call such a situation a
conflict).

<w>

<w>
<line no="22">hu bu me hefst
hu bu me haefst afrefredne segber afrefredne zeg</line>
ge mid binre smealican spreece, <line no="28">ber ge mid
ge mid pinre wynsum nesse bines pinre smealican spre</line>
<line no="24" >ce, ge mid binre
wynsumnesse pines </line>
(0) (i)
<w>hu</w> <w>bu</w> <w>me</w> hu <res><restxt>bu m< /restxt></res>e haefst
<w>heefst< /w> <w>afrefredne< /w> afrefredne mgh<dmg>er</dmg> ge <dmg>mid
<w>agber</w> <w>ge</w> <w>mid</w> < /dmg> binre smealican spr<dmg>e&=</dmg>ce,
<w>binre</w> <w>smealican</w> <dmg>g</dmg>e mid
<w>spreecel /w>, <w>ge</w> <w>mid</w> <dmg>b</dmg>in<dmg>r</dmg>e wynsum
<w>binre</w> <w>wynsum nesse</w> nesse pin<dmg>e</dmg> <res><restxt>s
<w>bines< /w> < /restxt>< /res>
(ii) (iii)

Fig. 1. A fragment of King Alfred’s Boethius manuscript [1] and different XML encod-
ings.

Consider a fragment of folio 38 wverso of British Library Cotton Otho A
vi [1] (King Alfred’s Boethius manuscript) shown in Fig.1. The text of the
three lines depicted on this fragment is shown in the box marked (0) in Fig.1.
The remaining boxes in Fig.1 show the following markup for this fragment: (i)
information about physical breakdown of the text into lines (<1line> element);
(ii) information about the structure of the text (<w> element encodes words),
(iii) information about the damage and text obscured by the damage (<dmg>
and <rstxt> tags).

Some of the encodings of this fragment are in conflict. The solid boxes over
parts of the image indicate the scope of the <dmg> elements and the dotted
boxes indicate the scope of the <rstxt> elements. In addition, we indicate the
positions of some of the <w> tags. Damage and restoration markup overlaps
words in some places: the damaged text includes the end of one word and the
beginning of the next word. In addition to that, some words start on one physical
line and continue on another.

! The encodings are simplified. We have removed some attribute values from the
markup to highlight the structure of each encoding.

Resolving markup conflicts. The TEI Guidelines [13] suggest a number of pos-
sible ways to resolve conflicts. These methods revolve around the use of empty
milestone tags and the fragmentation of markup. We illustrate the proposed sug-
gestions in Fig.2 on the example of the markup conflict between the <w> and
<1line> elements at the end of line 22. The first suggested way (Fig.2.(a)) uses
milestone (empty) elements. In this case the editor determines the pairs of tags
that may be in conflict, and for each such pair declares at least one tag as empty
in the DTD/XSchema. The other two ways (Fig.2.(b),(c)) are variants of the
fragmentatation technique: one of the conflicting elements is split into two parts
by the other one (in Fig.2 we choose to split <w> element). Simple fragmenta-
tion, however, may be confusing: encoding in Fig.2.(b) creates the impression
that “eeg” and “ber” are two separate words. To alleviate this problem, a variety
of conventions based on the use of attributes can be proposed to indicate that a
specific element encodes a fragment. Fig.2.(c) shows one such convention that
uses a “glue” attribute Id. This implied attribute will get the same value for all
fragments of the same encoding.

Key drawback. The answer lies not only in alleviating the markup conflict prob-
lem: a more general problem of maintenance of markup in situations where
conflicts are a frequent occurrence must be addressed. Up to this point, such
maintenance resided in the hands of human editors who were responsible for
specific encoding decisions to prevent markup conflicts. This tended to generate
a variety of gimmick solutions in the markup language, such as introduction of
tags whose sole purpose was to overcome a specific type of conflict, but which,
in the process made the DTD/XSchema of the markup language complex and
hard to maintain. Our approach, described in the remainder of this paper allows
the software to take over the tasks of markup maintenance, simplifying the work
of editors.

<line no="22" /> <w>hu</w> <w>bu</w> <w>me</w> <w>hefst</w>
<w>afrefredne</w>

<w>zg<line no="238"/>per</w> <w>ge</w> <w>mid</w>

(a) Milestone elements.

<line no="22"> <w>zg </w> </line>
<line no="23"><w>ber</w> </line>
(b) Fragmentation.

<line no="22"> <w id="1">z=g </w></line>
<line no="23"><w id ="1”>ber</w> < /line>
(c) Fragmentation with virtual join (variant with “glue” attribute).

Fig. 2. Resolving markup conflicts.

3 Concurrent XML Hierarchies

In this section we formally define the notion of the collection of concurrent
markup hierarchies. Given a DTD D, we let elements(D) denote the set of all
markup elements defined in D. Similarly, we let elements(d), where d is an XML
document, denote the set of all element tags contained in document d.

Definition 1. A concurrent markup hierarchy CM H is a tuple
CMH =< S,r,{D1, D>, ...,Dy} > where:

e S is a string representing the document content;

e r is an XML element called the root of the hierarchy;

e D;, i =1,k are DTDs such that:

(1) r is defined in each D;, 1 <i <k, andV1<i,j<k,i#j
elements(D;) () elements(D;) = {r};

(1) V1 < i < k, Vt € elements(D;) r is an ancestor of t in D;.

In other words, the collection of concurrent markup hierarchies is composed
of textual content and a set of DTDs sharing the same root element and no other
elements.

Definition 2. Let CMH =< S,r,{D1,Da,...,Di} > be a concurrent markup
hierarchy. A distributed XML document dd over CM H is a collection of XML
documents: dd =< di,ds, ...,dr > where (V1 < i < k) d; is valid w.r.t. D; and
content(d;) = content(ds) = ... = content(d;) = S2.

The notion of a distributed XML document allows us to separate conflicting
markup into separate documents. However, dd is not an XML document itself,
rather it is a wirtual union of the markup contained in d;,. .. ,d;. Our goal now
is to define XML documents that incorporate in their markup exactly the infor-
mation contained in a distributed XML document. We start by defining a notion
of a path to a specific character in content.

Definition 3. Let d be an XML document and let content(d) = S. Let S =
c1Ca .. .cpr- The path to ith character in d denoted path(d,i) or path(d,c;) is
the sequence of XML elements forming the path from the root of the DOM tree
of d to the content element that contains c;.

Let D be a DTD and let elements(D) N elements(d) # 0, and let the root of
d be a root element in D. Then, the path to ith character in d w.r.t. D, denoted
path(d,i, D) or path(d,c;, D) is the subsequence of all elements of path(d,) that
belong to D.

Following XPath notation, we will write path(d,i) and path(d,i,D) in a
form al/a2/.../as. We notice that path(d,i, D) defines the projection of the
path to ith character in d onto a specific DTD. For example, if path(d,i) =
col/ fol [pline/line/w/dmg and D contains only elements <col>, <pline> and
<w>, then path(d,i, D) = col [pline/w. We can now use paths to content charac-
ters to define “correct” single-document representations of the distributed XML
documents.

2 content(doc) denotes the text content of the XML document doc.

Definition 4. Let d* be an XML document and let D be a DTD, such that
elements(d*)Nelements(D) # O and the root of d* is a root element in D. Then,
the set of filters of d* onto D, denoted Filters(d*,D) is defined as follows:

Filters(d*, D) = {d|content(d) = content(d*),
elements(d) = elements(d*) N elements(D)
and (V1 < i < |content(d)|)path(d*,i, D) = path(d,i)}

Basically, a filter of d* on D is any document that contains only elements
from D that preserves the paths to each content character w.r.t. D. If we are to
combine the encodings of all d;s of a distributed document dd in a single doc-

ument d* we must make sure that we can “extract” every individual document
d; from d*.

Definition 5. Let dd =< dy,ds,...dr > be a distributed XML document over
the collection of markup hierarchies CMH =< S,r,{D1,...,Dy} >. A set of
mergers of dd denoted Mergers(dd) is defined as

k
Mergers(dd) = {d*|elements(d*) C U elements(D;)
j=1

and (V1 < i < k)d; € Filters(d*,D;)}

Given a distributed XML document dd, we can represent its encoding by con-
structing a single XML document d* from the set Mergers(dd). d* incorporates
the markup from all documents dy, . .., dy in a way that (theoretically) allows the
restoration of each individual document from d*. A document d* € Mergers(dd)
is called a minimal merger of dd iff for each content character c;, path(d*,c;)
consists exactly of the elements from all path(d;,c;), 1 <i <k.

4 Algorithms

Section 3 specifies the properties that the “right” representations of distributed
XML documents (i.e., XML markup in concurrent hierarchies within a single
XML document) must have. In this section we provide the algorithms for building
such XML documents. In particular, we address the following three problems:

— Merge: given a distributed XML document dd, construct a minimal merger
d* of dd. We will refer to the document constructed by our Merge algorithm
as the master XML document for dd.

— Filter: given a master XML document for some distributed document dd and
one of the concurrent hierarchies D;, construct the document d;.

— Update: given a distributed XML document dd, its master XML document
d* and a simple update of the component d; of dd, that changes it to d,
construct (incrementally) the master XML document d' for the distributed
document dd' =< di,...,d, ..., dp >.

Fig.3 illustrates the tasks addressed in this section and the relationship be-
tween them and the encoding work of editors. In the proposed framework, the
editors are responsible for defining the set {Ds, ..., Dy} of the concurrent hier-
archies and for specifying the markup for each component of the distributed doc-
ument dd. The MERGE algorithm then automatically constructs a single master
XML document d*, which represents the information encoded in all components
of dd. The master XML document can then be used for archival or transfer pur-
poses. When an editor wants to obtain an XML encoding of the content in a
specific hierarchy, the Filter algorithm is used to extract the encoding from the
master XML document. Finally, we note that MERGE is a global algorithm that
builds the master XML document from scratch. If a master XML document has
already been constructed, the Update algorithm can be used while the editorial
process continues to update incrementally the master XML document given a
simple (atomic) change in one of the components of the distributed XML docu-
ment. Each algorithm is discussed in more detail below. Note that the theorems
in this section are given without proofs. The proofs can be found in [5].

editor editor editor editor

i } }
[l [&] - [d] | di |

(_MERGE) (_FILTER) (UPDATE)

M aster Document

Fig. 3. The framework solution.

4.1 MERGE Algorithm

The MERGE algorithm takes as input tokenized versions of the component docu-
ments dy, . . ., dy of the distributed document dd and produces as output a single
XML document that incorporates all the markup of di, ..., ds. The algorithm
resolves the overlap conflicts using the fragmentation with a ”glue” attribute ap-
proach described in Section 2. A special attribute link is added to all markup
elements that are being split, and the value of this attribute is kept the same for
all markup fragments.

The algorithm uses the Simple API for XML (SAX)[3] for generating tokens.
SAX callbacks return three different types of token strings: (i) start tag token
string (ST), (ii) content token string (CT), (iii) end tag token string (ET). If
token is the token returned by the SAX parser, then we use type(token) to
denote its type (ST, CT, ET) as described above and tag(token) to denote the
tag returned by SAX (for ST and ET tokens).

The MERGE algorithm works in two passes. On the first pass, the input
documents are parsed in parallel and an ordered list is built of ST and ET
tokens for the creation of the master XML document. The second pass of the
algorithm scans the token list data structure built during the first pass and
outputs the text of the master XML document.

The main data structure in the MERGE algorithm is tokenListSet, which is
designed to store all necessary markup information for the master XML doc-
ument. Generally speaking, tokenListSet is an array of token lists. Each array
position corresponds to a position in the content string of the input XML doc-
uments. In reality, only the positions at which at least one input document has
ST or ET tokens have to be instantiated. For each position i, tokenListSet[i]
denotes the ordered list of markup entries at this position. At the end of the
first pass of the MERGE algorithm, for each 4, tokenListSet[i] will contain the
markup elements to be inserted in front of ith character of the content string in
the master XML document exactly in the order they are to be inserted. The sec-
ond pass of the MERGE algorithm is a straightforward traversal of tokenListSet,
which for each position outputs all the tokens and then the content character.

Fig.4 contains the pseudocode for the MERGE algorithm. The algorithm iter-
ates through the positions in the content string of the input documents. For each
position %, the algorithm first collects all ET and ST tokens found at this posi-
tion. It then determines the correct order in which the tokens must be inserted in
the master XML document, and resolves any overlaps by inserting appropriate
end tag and start tag tokens at position ¢ and adding the link attribute to the
start tag tokens. In the algorithm push(Token,List) and append (Token,List)
add Token at the beginning and at the end of List respectively.

Theorem 1. Let dd =< dy,...,dr > be a distributed XML document. Let d*
be the output of MERGE(dy,...,dy). Then d* is a minimal merger of dd.

4.2 FILTER Algorithm

The FILTER algorithm takes as input an XML document d* produced by the
MERGE algorithm and a DTD D, filters out all markup elements in d* that are
not in D and merges the fragmented markup.

In one pass the algorithm analysis the ordered sequence of tokens provided
by a SAX parser and performs the following operations:
- removes all ST and ET tokens of markup elements not in D;
- from a sequence ST, [CT], ET, [CT], ..., ST, [CT], ET of tokens for a frag-
mented element in D, removes the ”glue” attributes and outputs the first ST
token, all possible intermediate CT tokens and the last ET token in the sequence;
- all other tokens are output without change in the same order they are received
from the SAX parser.

The pseudo-code for FILTER appears in Fig.5. The following theorem states
that FILTER correctly reverses the work of the MERGE algorithm.

Algorithm MERGE(d1, .-, dg)
//PASS I

initialize tokenListSet

for cpos = 1 to sizeof(content(d1))
//Determine the correct nesting
//of all tags that end at current position
move all end tag tokens
in tokenListSet|[cpos] to EndTokenList
Build list of tokens from

// PASS II
marker = 0
for (each position entry pos
in tokenListSet)
output content in contBuf fer
from marker to pos
marker = pos
output tokens at position pos
in tokenListSet

di,...,d, at position ¢
collect tokenListSet[i] from d1,...,d

//Find correct order of tokens,
/ /resolve overlapping conflicts
pos = cupos-1
while Not Empty(EndTokenList)
for (each unmarked start tag in
tokenListSet[pos])
if (start tag is in EndTokenList)
push(end tag, tokenListSet[cpos])
delete(end tag, EndTokenList)
mark(start tag)
else
add ”glue attribute”= currentID
to start tag entry
push(matching end tag, tokenListSet[cpos])
append(start tag, tokenListSet[cpos])
mark(start tag)

pos = pos -1

Fig. 4. The MERGE algorithm

Theorem 2. Let dd =< di,...,dr > be a distributed XML document, and d*
be the output of MERGE(dd). Then (V1 <14 < k), FILTER(d*, D;) = d;.

4.3 UPDATE Algorithm

The UPDATE algorithm updates the master XML document (see Fig.3) with
the new markup element. It takes as the input two integers, from and to, the
starting and ending positions for the markup in the content string and the new
markup element, TAG. Due to possible need to fragment the new markup this
process requires some care. The goal of the algorithm is to introduce the new
markup into the master XML document in a way that minimizes the number of
new fragments. The algorithm uses the DOM model [2] for the XML document
and performs the insertion of the node in the XML document tree model. In
this model, for an element with mixed content, the text is always a leaf. Then
from and to will be positions in some leaves of the document tree. Let FROM
and T'O be the parent nodes of the text leaves containing positions from and to
respectively. We denote by LC A the lowest common ancestor of nodes FFROM
and TO. Let AFROM be child of LC A that is the ancestor of FROM , and let
ATO be the child of LC' A that is the ancestor of TO (see Fig.6).

The UPDATE algorithm traverses the path FROM — ... - AFROM —
LCA — ATO — ... — TO and inserts TAG nodes with glue attributes as

10

Algorithm FILTER(d, D) Algorithm UPDATE(from, to, TAG)
glueTagSet = <empty> find LCA

start parsing document d //start inserting nodes

while (more tokens) for (each NODE in the path

token = nextToken() from FROM to AFROM)
if (token is CT) insert a node TAG with glue attributes
output token as a parent for all siblings of NODE,

continue at the right of NODE
else if (token is ST) . i .
if (tag(token) € glueTagSet OR insert a node TAG with glue attributes
tag(token) ¢ D) as a parent of all nodes between
continue AFROM and ATO
if (tag(token) has glue attributes) for (each NODE in the path
remove glue attributes from ATO to TO)
put token in glueTagSet insert a node TAG with glue attributes
output token as a parent for all siblings of NODE,
else if (token is ET) at the left of NODE
if (tag(token) ¢ D)
continue

if (tag(token) € glueTagSet AND
not last token for tag(token))
continue
output token

Fig. 5. The FILTER and UPDATE algorithms

LCA

Fig. 6. The XML document tree model used in UPDATE algorithm

needed. The pseudo-code description of the algorithm is shown in Fig.5. The
following theorem says that the result of UPDATE allows for correct recovery of
components of the distributed document.

Theorem 3. Let dd =< dy,...,dr > be a distributed XML document and d*
be the output of MERGE(dd). Let TAG € elements(D;), (from,to,TAG) be an
update request and d} be a well-formed result of marking up the content between
from and to positions. Then, FILTER(UPDATE(d*, (from,to,TAG)), D;) = d.

5 Future Work

This paper introduces the general framework for managing concurrent XML
markup hierarchies. There are three directions in which we are continuing this

11

research. First, we are working on providing the database support for the main-
tenance of concurrent hierarchies. Second, we are studying the properties of the
proposed algorithms w.r.t. the size of the markup generated, optimality of the
markup and computational complexity, and efficient implementation of the algo-
rithms. Finally, we are planning a comprehensive comparison study of a variety
of methods for support of concurrent hierarchies.

References

. British Library MS Cotton Otho A. vi, fol. 38v.

2. Document Object Model (DOM) Level 2 Core Specification.

10.

11.

12.

13.

14.

15.

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/, Nov 2000.
W3C Recommendation.

. Simple API for XML (SAX) 2.0.1. http://www.saxproject.org, Jan 2002. Source-

Forge project.

. Serge Abiteboul, Jason McHugh, Michael Rys, Vasilis Vassalos, and Janet L.

Wiener. Incremental maintenance for materialized views over semistructured data.
In Proc. 24th Int. Conf. Very Large Data Bases, VLDB, pages 38-49, 24-27 1998.

. Alex Dekhtyar and Ionut E. Iacob. A framework for management

of concurrent XML markup. Technical Report TR 374-03, Uni-
versity of Kentucky, Department of Computer Science, June 2003.
http://www.cs.uky.edu/~dekhtyar/publications/TR374-03.concurrent.ps.

. P. Durusau and M. B. O’Donnell. Concurrent Markup for XML Documents. In

Proc. XML Europe, May 2002.

. C. Huitfeldt and C. M. Sperberg-McQueen. TexMECS: An

experimental markup meta-language for complex documents.
http://www.hit.uib.no/claus/mlcd/papers/texmecs.html, February 2001.

. Ioana Manolescu, Daniela Florescu, and Donald Kossmann Kossmann. Answering

XML queries over heterogeneous data sources. pages 241-250.

. Wolfgang May. Integration of XML data in XPathLog. In DIWeb, pages 2-16,

2001.

Wolfgang May. Lopix: A system for XML data integration and manipulation. In
The VLDB Journal, pages 707-708, 2001.

W.B. Seales, J. Griffioen, K. Kiernan, C. J. Yuan, and L. Cantara. The Digi-
tal Atheneum: New Technologies for Restoring and Preserving Old Documents.
Computers in Libraries, 20(2):26-30, February 2000.

E. Solopova. Encoding a transcript of the beowulf manuscript in sgml. In Proc.
ACH/ALCC, 1999.

C. M. Sperberg-McQueen and L. Burnard(Eds.). Guidelines for Text Encoding and
Interchange (P4). http://www.tei-c.org/P4X /index.html, 2001. The TEI Consor-
tium.

C. M. Sperberg-McQueen and C. Huitfeldt. GODDAG: A Data Structure for
Overlapping Hierarchies, Sept. 2000. Early draft presented at the ACH-ALLC
Conference in Charlottesville, June 1999.

A. Witt. Meaning and interpretation of concurrent markup. In Proc., Joint Con-
ference of the ALLC and ACH, pages 145-147, 2002.

12

