
Ant

• Originally ANT = Another Neat Tool

– Created by James Duncan Davidson

– Now an Apache open-source project

• Ants are amazing insects

– Can carry 50 times their own weight

– Find the shortest distance around obstacles

– Work in shifts around the clock

Ant

• Ant is a Java-based build tool designed to be
– Cross-platform

– Easy to use

– Extensible

– Scalable

• Other benefits
– Fast

– XML format

– Tight integration with JUnit

– Built-in support for J2EE development (EJB compilation and
packaging)

– Integrates with FTP, Telnet, application servers, SQL
commands

– de Facto standard for most open source Java projects, such as
Apache Tomcat

– Built-in support in Eclipse and other IDEs

A First Project with Ant

• Each project requires a build.xml file

• XML files contain a tree-like structure of
elements (nodes)

• The top-level element is the project

– Each build.xml file can contain only one project

• Each project can contain targets

– Each target can contain tasks

• Each task can contain attributes and elements

Ant vs. Make

• Ant and Make have many similarities

• Here are some of the differences

– Ant is platform independent

• Java based

• File and path resources are generated at run-time

• Make typically uses tools expected in the underlying OS

– Ant does not require hidden tab characters

– Ant leaves file dependencies to the tasks to work

out, it only specifies target dependencies

– Ant allows easy addition of source files without

having to change the build script

A First Project with Ant
• Suppose you have some Java source code in

the current directory or subdirectories

• Place the following in a file named build.xml in
the same directory (see examples/FirstProject)
<?xml version=“1.0”?>

<project name=“firstbuild” default=“compile” >

<target name=“compile”>

<javac srcdir=“.” />

<echo>compilation complete!</echo>

</target>

</project>

public class HelloWorld {

public static void main(String [] args) {

System.out.println("Hello Ant users");

}

}

A First Project with Ant
• Run the Ant build script with either

ant

ant compile

• A successful build (see Examples/FirstProject)
Buildfile: build.xml

compile:

[javac] Compiling 1 source file

[echo] compilation complete!

BUILD SUCCESSFUL

Total time: 6 seconds

A First Project with Ant
• A failed build

Buildfile: C:\Ant\examples\Failure1\build.xml

compile:

[javac] Compiling 1 source file

[javac] C:\Ant\examples\Failure1\HelloWorld.java:4: ';' expected

[javac] }

[javac] ^

[javac] 1 error

[javac] BUILD FAILED: file:C:/Ant/examples/Failure1/build.xml:4: Compile failed; see the

compiler error output for details.

Total time: 1 second

public class HelloWorld {

public static void main(String [] args) {

System.out.println("Hello Ant users")

}

}

A First Project with Ant
• Another failure

Buildfile: C:\Ant\examples\Failure2\build.xml

compile:

[javac] BUILD FAILED: file:C:/Ant/examples/Failure2/build.xml:4: The <javac> task

doesn't support the "sourcedir" attribute.

Total time: 370 milliseconds

<?xml version=“1.0”?>

<project name=“firstbuild” default=“compile” >

<target name=“compile”>

<javac sourcedir=“.” />

<echo>compilation complete!</echo>

</target>

</project>

A First Project with Ant
• Another failure

Buildfile: C:\Ant\examples\Failure3\build.xml

compile:

[jaavac] BUILD FAILED: file:C:/Ant/examples/Failure3/build.xml:4: Could not create task

or type of type: jaavac.

Ant could not find the task or a class this task relies upon.

This is common and has a number of causes; the usual

solutions are to read the manual pages then download and

install needed JAR files, or fix the build file:

- You have misspelt 'jaavac'.

Fix: check your spelling….

<?xml version=“1.0”?>

<project name=“firstbuild” default=“compile” >

<target name=“compile”>

<jaavac srcdir=“.” />

<echo>compilation complete!</echo>

</target>

</project>

Improving the project structure

and organization with Ant
• As our projects grow beyond toy

examples, we will probably want to do the
following

– Place source code in packages

– Separate source code from object code

– Separate test code from source code

– Create a distribution such as a JAR file

– Provide a mechanism to delete all

intermediate and object code

– Execute our program from a guaranteed up-

to-date compile

Sample project directory

structure• Project Name
– src source files

– test unit-test source files

– build intermediate files generated during a
build

• classes .class files from .java files

• testclasses .class files from unit test .java files

• html .html files from .java or .xml files

– dist distributable files generated during a
build

A Second Project with Ant
<?xml version="1.0" ?>

<project name="SecondProject" default="execute">

<target name="init">

<mkdir dir="build/classes" />

<mkdir dir="build/testclasses" />

<mkdir dir="dist" />

</target>

<target name="compile" depends="init">

<javac srcdir="src"

destdir="build/classes"

/>

</target>

<target name="test-compile" depends="compile">

<javac srcdir="test"

destdir="build\testclasses"

classpath="C:\Program Files\JUnit\junit3.8.1\junit.jar;build\classes"

/>

</target> build.xml continued on next slide

see examples/SecondProject

Automatically builds package structure

A Second Project with Ant

<target name="archive“ depends="compile,test-compile" >

<jar destfile="dist/SecondProject.jar"

basedir="build/classes" />

</target>

<target name="clean" depends="init">

<delete dir="build" />

<delete dir="dist" />

</target>

<target name="execute" depends="compile" >

<java

classname="com.simexusa.TempConverter.TempConverter"

classpath="build/classes"

fork=“true”/>

</target>

</project>

build.xml continued from previous slide

fileset
• A fileset is a set of files rooted from a single

directory

• By default, a fileset specified with only a
root directory will include all of the files in
that directory and all subdirectories
recursively<fileset dir=“src” />

<fileset dir=“docs”>

</fileset>

Patternsets in filesets
• A fileset can contain patternsets

• A patternset is a collection of file matching
patterns and must be nested in a fileset

– include (also includesfile)

– exclude (also excludesfile)
<fileset dir=“src”>

<include name=“*.java” />

</fileset>

<fileset dir=“src” includes=“**/*.java”>

<fileset dir=“src”>

<include name=“**/*.java” />

</fileset>

Contains all .java files in src

Contains only .java files in src and

subdirectories below src

Same as previous

