Ant

 Originally ANT = Another Neat Tool
— Created by James Duncan Davidson
— Now an Apache open-source project
* Ants are amazing insects
— Can carry 50 times their own weight
— Find the shortest distance around obstacles
— Work in shifts around the clock

Ant

« Antis a Java-based build tool designed to be
— Cross-platform
— Easy to use
— Extensible
— Scalable

« Other benefits
— Fast
— XML format
— Tight integration with JUnit

— Built-in support for J2EE development (EJB compilation and
packaging)

— Integrates with FTP, Telnet, application servers, SQL
commands

— de Facto standard for most open source Java projects, such as
Apache Tomcat

— Built-in support in Eclipse and other IDEs

A First Project with Ant

Each project requires a build.xml file

XML files contain a tree-like structure of
elements (nodes)

The top-level element is the project
— Each build.xml file can contain only one project

Each project can contain targets

— Each target can contain tasks
 Each task can contain attributes and elements

Ant vs. Make

« Ant and Make have many similarities

 Here are some of the differences

— Ant is platform independent
- Java based
 File and path resources are generated at run-time
« Make typically uses tools expected in the underlying OS

— Ant does not require hidden tab characters

— Ant leaves file dependencies to the tasks to work
out, it only specifies target dependencies

— Ant allows easy addition of source files without
having to change the build script

A First Project with Ant

» Suppose you have some Java source code in
the current directory or subdirectories

public class HelloWorld {
public static void main(String [] args) {
System.out.printin("Hello Ant users");

}

}

 Place the following in a file named build.xml in
the same directory (see examples/FirstProject)

<?xml version=“1.0"7?>
<project name="firstbuild” default="compile” >
<target name="compile”>
<javac srcdir="." />
<echo>compilation complete!</echo>
</target>
</project>

A First Project with Ant

* Run the Ant build script with either
ant
ant compile

» A successful build (see Examples/FirstProject)

Buildfile: build.xml

compile:
[javac] Compiling 1 source file
[echo] compilation complete!

BUILD SUCCESSFUL
Total time: 6 seconds

A First Project with Ant
+ A failed build

public class HelloWorld {
public static void main(String [] args) {
System.out.printin("Hello Ant users") <

}

}

Buildfile: C:\Ant\examples\Failure1\build.xml

compile:
[javac] Compiling 1 source file
[javac] C:\Ant\examples\Failure1\HelloWorld.java:4: ';' expected
[javac] }
[javac] *
[javac] 1 error

[javac] BUILD FAILED: file:C:/Ant/examples/Failure1/build.xml:4: Compile failed; see the
compiler error output for details.

Total time: 1 second

A First Project with Ant

 Another failure

<?xml version=“1.0"7?>
<project name="firstbuild” default="compile” >
<target name="compile”>
<javac sourcedir="." /> < l
<echo>compilation complete!</echo>
</target>
</project>

Buildfile: C:\Ant\examples\Failure2\build.xml

compile:
[javac] BUILD FAILED: file:C:/Ant/examples/Failure2/build.xml:4: The <javac> task
doesn't support the "sourcedir" attribute.

Total time: 370 milliseconds

A First Project with Ant

 Another failure

<?xml version=“1.0"7>
<project name="firstbuild” default="compile” >
<target name="compile”>
<jaavac srcdir="." /> < l
<echo>compilation complete!</echo>
</target>
</project>

Buildfile: C:\Ant\examples\Failure3\build.xml

compile:
[jaavac] BUILD FAILED: file:C:/Ant/examples/Failure3/build.xml:4: Could not create task
or type of type: jaavac.

Ant could not find the task or a class this task relies upon.

This is common and has a number of causes; the usual

solutions are to read the manual pages then download and

install needed JAR files, or fix the build file:

- You have misspelt 'jaavac'.

Fix: check your spelling....

Improving the project structure
and organization with Ant

* As our projects grow beyond toy
examples, we will probably want to do the
following
— Place source code in packages
— Separate source code from object code
— Separate test code from source code
— Create a distribution such as a JAR file

— Provide a mechanism to delete all
intermediate and object code

— Execute our program from a guaranteed up-

tAn_Anatn ArArMmMmnila

Sample project directory

- I I
* Project Name structure
— SIC source files
— test unit-test source files
— build intermediate files generated during a
build
» classes .class files from .java files
* testclasses .class files from unit test .java files
e html .ntml files from .java or .xml files
L .t S .
- O 3 ,J build ,J dist g
. srC ”j kest
-5 T
S -
=l |2 simexusa
) TempConer ter
=l [test
T
=l |2 simexusa

A Second Project with Ant

<?xml version="1.0" ?>

<project name="SecondProject" default="execute": See examples/SecondPrOJ ect

<target name="init">
<mkdir dir="build/classes" />
<mkdir dir="build/testclasses" />
<mkdir dir="dist" />

</target>

<target name="compile" depends="init">
<javac srcdir="src"
destdir="build/classes"

/> Automatically builds package structure
</target>

<target name="test-compile" depends="compile">
<javac srcdir="test"
destdir="build\testclasses"
classpath="C:\Program Files\JUnit\junit3.8.1\junit.jar;build\classes"

/>
</target> build.xml continued on next slide

A Second Project with Ant

build.xml continued from previous slide

<target name="archive“ depends="compile,test-compile" >
<jar destfile="dist/SecondProject.jar"
basedir="build/classes" />
</target>

<target name="clean" depends="init">
<delete dir="build" />
<delete dir="dist" />

</target>

<target name="execute" depends="compile" >
<java
classname="com.simexusa.TempConverter.TempConverter"
classpath="build/classes"
fork="“true”/>
</target>
</project>

flleset

* Afileset is a set of files rooted from a single
directory

» By default, a fileset specified with only a
root directory will include all of the files in
that directory and all subdirectories

<filespEIFL $icSHV |

<fileset dir="docs”>
</fileset>

Patternsets In filesets

* A fileset can contain patternsets

* A patternset is a collection of file matching
patterns and must be nested in a fileset
—Include (also includestfile)
—exclude (also excludesfile)

<fileset dir="src”’>
<include name="*.java” />
</fileset>

Contains all .java files 1n src

<fileset dir="src"> Contai v filos r
<include name="**/* java” /> ontains only .java I11€s 1n Src¢ an

</fileset> subdirectories below src

<fileset dir="“src” includes="**/*.java”’>

Same as previous

