]

Exceptions

e Exceptions are a mechanism for dealing with
inappropriate behavior or errors such as
attempting to access a null reference, indexing
an array out of bounds, or trying to read past
the end of a file.

e Java code can explicitly raise an exception by
using the throw expression.

e Exceptions can be handled in try/catch/finally
blocks.

CALPOLY

]

Exceptions

 The JVM can throw exceptions which can
be caught in try/catch blocks.

int x = Integer.parselnt(JOptionPane.showInputDialog(null,"Enter an int"));
int y = Integer.parselnt(JOptionPane.showInputDialog(null,"Enter another"));
int [] z = new int[5];
try {
System.out.println("y/x gives " + (y/x));
System.out.println("y is " +y + " z[y] is " + z[y]);
}
catch (ArithmeticException e) {
System.out.println(" Arithmetic problem " + e);
}
catch (ArraylndexOutOfBoundsException e) {
System.out.println("Subscript problem " + e);

1

CACPOLY

%E .
e Exceptions can be expiicitly thrown and
caught in try/catch blocks.

public class ThrowTest {
public static void main(String[] args) { //pardon the poor indentation

String s = "";
try {

s = "http://www.whatzup"; doSomelO(s);
}

catch (MalformedURLEXxception e) {
System.out.println("URL problem " +s +" " + e);

}

try {
s = "http://www.whatzup.com"; doSomelO(s);
s = "http://www.whatzup.org"; doSomelO(s);

}

catch (MalformedURLEXxception e) {
System.out.println("URL problem " +s + " " + e); 1o}

public static void doSomelO(String url) throws MalformedURLException {
URL tempURL = new URL(url); //could throw Malformed URLException

SAE | e e (o) A S AN (et —E TLIODUL = ot Tl e
11 \=1 — UlL.IIUCAUI .CUIll J) A7ICSUICLE UINLS LU Ullly .CULLL 5

C"\L P(_L LY i throw new MalformedURLExceEtions =i. t t t

J

Exceptions

e All exceptions are objects in Java.

» All exceptions are subclasses of
java.lang. Throwable.

e There are two categories of exceptions.
— Checked exceptions (java.lang.Exception)

— Unchecked exceptions
e Runtime exceptions (java.lang.RuntimeException)

e Errors (java.lang.Error)

e Many subclasses of the above three are already
defined, but you can also create your own classes
of exceptions by subclassing one of the above
classes.

CALPOLY

J

Runtime Exceptions

 Runtime exceptions are generally problems that
could be prevented by the programmer such as:
— Bad casts
— Qut-of-bounds array access
— Null pointer access

e Because runtime exceptions should not occur in
correct programs, your code 1s not required to
catch them so they are also called unchecked
exceptions.

CALPOLY

I
Checked Exceptions

e Other exceptions can be harder to prevent because
they rely on user input or external events.

 Some examples of checked exceptions are:
— Trying to read past the end of a file
— Trying to open a malformed URL

— Trying to find a Class object for a string that does not
correspond to an existing class.

e Code that may throw a checked exception must
provide a try/catch block to handle the exception
or the compiler will complain.

CALPOLY

.
Checked Exceptions Example

e Methods which throw checked exceptions
must explicitly state what exceptions they
throw and be called within a try block.

public static void main(String[] args) {

try {
doSomelO("http://www.whatzup");

}

catch (MalformedURLException e) {
System.out.println("URL problem " + e);

}

}
public static void doSomelO(String url) throws MalformedURLException {

throw new MalformedURLException(); //create instance in throw

}

1

CALPOLY

irowingsatching viualtiple BExceptic
public static void main(String[] args) {
try {
doSomelO("http://www.whatzup");
}
catch (MalformedURLException e) {
System.out.println("URL problem " + e);
}
catch (SomeOtherException e) {
System.out.println(“Some Other problem * + e);
}
}
public static void doSomelO(String url)
throws MalformedURLException, SomeOtherException {
i)
throw new MalformedURLException(); //create instance in throw
else
throw new SomeOtherException(); //create instance in throw
}
1

CACPOLY

e Sometimes you want sonte code executed at

the end of a method regardless of whether
an exception was thrown or not.

e The statements in a finally block get
executed after the try block if no exceptions
are thrown, or after the catch block if an

exception 1s thrown and caught.

try {
doSomelO("http://www.whatzup");

}
catch (MalformedURLException e) {
System.out.println("URL problem " + e);
}
finally {
System.out.println(““The try is done”);

(CAL BOLY

]

Re-throwing exceptions

* Sometimes a catch handler may only do part
of the job of handling an exception.

* The handler can then re-throw the exception
so that a caller of the method can continue
to handle the exception.

try {
doSomelO("http://www.whatzup");

}
catch (MalformedURLException e) {
System.out.println("URL problem " + e);

throw e;
1

CACFOLY

J

Extending Exception Classes

e Exception classes can be subclasses of other
exception classes.

e Catch handlers will catch all exceptions of
the specitied class or any subclass.

e Separate catch handlers can be defined to
catch super and sub-classes.

e Subclass handlers must come before super-
class handlers.

CALPOLY

J

I \Q

class BadUserInputException extends Exception {

]
class ReallyBadUserInputException extends BadUserInputException {

-

public static void main(String[] args) {
try {
getlnput();

}
catch (ReallyBadUserInputException €) { //don’t switch the order

System.out.println(“You really messed up " + e);

}
catch (BadUserInputException e) {

System.out.println(“You messed up “ + e);

)
)

CALPOLY

J

Exceptions and Inheritance

e Subclass methods that override a superclass
method cannot throw exceptions not defined
in the superclass method.

e Subclass methods are not required to throw
all exceptions of their corresponding
superclass methods.

CALPOLY

e

Exceptions and Inheritance

class BaseClass {
public void doSomething() throws BadUserInputException { ... }
public void doAnotherThing()
throws MalformedURLException, EOFException { ... }
}
class SubClass1 extends BaseClass {
public void doSomething() { ... } /lokay to not throw anything
}
class SubClass2 extends BaseClass {
public void doAnotherThing() throws EOFException { ... }//okay to throw just one
}
class SubClass3 extends BaseClass {
public void doSomething() throws ReallyBadUserInputException { ... }
/lokay to throw a subclass of the original method’s exception

CALPOLY

