
Exceptions
• Exceptions are a mechanism for dealing with

inappropriate behavior or errors such as

attempting to access a null reference, indexing

an array out of bounds, or trying to read past

the end of a file.

• Java code can explicitly raise an exception by

using the throw expression.

• Exceptions can be handled in try/catch/finally

blocks.

Exceptions
• The JVM can throw exceptions which can

be caught in try/catch blocks.
int x = Integer.parseInt(JOptionPane.showInputDialog(null,"Enter an int"));

int y = Integer.parseInt(JOptionPane.showInputDialog(null,"Enter another"));

int [] z = new int[5];

try {

System.out.println("y/x gives " + (y/x));

System.out.println("y is " + y + " z[y] is " + z[y]);

}

catch (ArithmeticException e) {

System.out.println("Arithmetic problem " + e);

}

catch (ArrayIndexOutOfBoundsException e) {

System.out.println("Subscript problem " + e);

}

Exceptions
• Exceptions can be explicitly thrown and

caught in try/catch blocks.
public class ThrowTest {

public static void main(String[] args) { //pardon the poor indentation

String s = "";

try {

s = "http://www.whatzup"; doSomeIO(s);

}

catch (MalformedURLException e) {

System.out.println("URL problem " + s + " " + e);

}

try {

s = "http://www.whatzup.com"; doSomeIO(s);

s = "http://www.whatzup.org"; doSomeIO(s);

}

catch (MalformedURLException e) {

System.out.println("URL problem " + s + " " + e); } }

public static void doSomeIO(String url) throws MalformedURLException {

URL tempURL = new URL(url); //could throw Malformed URLException

if (-1 == url.indexOf(".com")) //restrict URLs to only .com’s

{ throw new MalformedURLException(); } } }

Exceptions
• All exceptions are objects in Java.

• All exceptions are subclasses of
java.lang.Throwable.

• There are two categories of exceptions.

– Checked exceptions (java.lang.Exception)

– Unchecked exceptions

• Runtime exceptions (java.lang.RuntimeException)

• Errors (java.lang.Error)

• Many subclasses of the above three are already
defined, but you can also create your own classes
of exceptions by subclassing one of the above
classes.

Runtime Exceptions

• Runtime exceptions are generally problems that

could be prevented by the programmer such as:

– Bad casts

– Out-of-bounds array access

– Null pointer access

• Because runtime exceptions should not occur in

correct programs, your code is not required to

catch them so they are also called unchecked

exceptions.

Checked Exceptions

• Other exceptions can be harder to prevent because
they rely on user input or external events.

• Some examples of checked exceptions are:

– Trying to read past the end of a file

– Trying to open a malformed URL

– Trying to find a Class object for a string that does not
correspond to an existing class.

• Code that may throw a checked exception must
provide a try/catch block to handle the exception
or the compiler will complain.

Checked Exceptions Example
• Methods which throw checked exceptions

must explicitly state what exceptions they

throw and be called within a try block.
public static void main(String[] args) {

try {

doSomeIO("http://www.whatzup");

}

catch (MalformedURLException e) {

System.out.println("URL problem " + e);

}

}

public static void doSomeIO(String url) throws MalformedURLException {

…

throw new MalformedURLException(); //create instance in throw

}

}

Throwing/Catching Multiple Exceptions
public static void main(String[] args) {

try {

doSomeIO("http://www.whatzup");

}

catch (MalformedURLException e) {

System.out.println("URL problem " + e);

}

catch (SomeOtherException e) {

System.out.println(“Some Other problem “ + e);

}

}

public static void doSomeIO(String url)

throws MalformedURLException, SomeOtherException {

if (…)

throw new MalformedURLException(); //create instance in throw

else

throw new SomeOtherException(); //create instance in throw

}

}

Finally
• Sometimes you want some code executed at

the end of a method regardless of whether

an exception was thrown or not.

• The statements in a finally block get

executed after the try block if no exceptions

are thrown, or after the catch block if an

exception is thrown and caught.
try {

doSomeIO("http://www.whatzup");

}

catch (MalformedURLException e) {

System.out.println("URL problem " + e);

}

finally {

System.out.println(“The try is done”);

}

Re-throwing exceptions

• Sometimes a catch handler may only do part

of the job of handling an exception.

• The handler can then re-throw the exception

so that a caller of the method can continue

to handle the exception.

try {

doSomeIO("http://www.whatzup");

}

catch (MalformedURLException e) {

System.out.println("URL problem " + e);

throw e;

}

Extending Exception Classes

• Exception classes can be subclasses of other

exception classes.

• Catch handlers will catch all exceptions of

the specified class or any subclass.

• Separate catch handlers can be defined to

catch super and sub-classes.

• Subclass handlers must come before super-

class handlers.

Extending Exception Classes
class BadUserInputException extends Exception {

… }

class ReallyBadUserInputException extends BadUserInputException {

… }

public static void main(String[] args) {

try {

getInput();

}

catch (ReallyBadUserInputException e) { //don’t switch the order

System.out.println(“You really messed up " + e);

}

catch (BadUserInputException e) {

System.out.println(“You messed up “ + e);

}

}

Exceptions and Inheritance

• Subclass methods that override a superclass

method cannot throw exceptions not defined

in the superclass method.

• Subclass methods are not required to throw

all exceptions of their corresponding

superclass methods.

Exceptions and Inheritance
class BaseClass {

public void doSomething() throws BadUserInputException { … }

public void doAnotherThing()

throws MalformedURLException, EOFException { … }

}

class SubClass1 extends BaseClass {

public void doSomething() { … } //okay to not throw anything

}

class SubClass2 extends BaseClass {

public void doAnotherThing() throws EOFException { … }//okay to throw just one

}

class SubClass3 extends BaseClass {

public void doSomething() throws ReallyBadUserInputException { … }

//okay to throw a subclass of the original method’s exception

}

