
Testing with Mock Objects

• A mock object is an object created to stand in for
an object that your code will be collaborating
with. Your code can call methods on the mock
object, which will deliver results as set up by your
tests.

• In other words, in a fine-grained unit test, you
want to test only one thing. To do this, you can
create mock objects for all of the other things that
your method/object under test needs to complete
its job.

EasyMock
• EasyMock is a third-party library for

simplifying creating mock objects

• Download EasyMock1.2 for Java1.3 from

www.easymock.org

– EasyMock 2.x depends on Java 1.5

• Extract download

• Add easymock.jar to project

Testing Bank with EasyMock
package bank;

import java.util.Collection;

import org.easymock.MockControl;

import junit.framework.TestCase;

public class TestBank extends TestCase {

private Bank b;

private MockControl control;

private Collection mock;

protected void setUp() {

control = MockControl.createControl(Collection.class);

mock = (Collection) control.getMock();

b = new Bank(mock);

}

public void testNumAccounts() {

mock.size();

control.setReturnValue(7);

control.replay();

assertEquals(b.getNumAccounts(),7);

control.verify();

}

}

Recording what we we expect:

size() should be called, returning 7

Collection is mock.

We want to test Bank,

not Collection

Import MockControl

Turn on mock with replay()

Check expectations with verify()

Failing Expectations

Testing getLargest() with EasyMock
package bank;

import java.util.SortedSet;

import org.easymock.MockControl;

import junit.framework.TestCase;

public class TestBank extends TestCase {

…

public void testGetLargest() {

control = MockControl.createControl(SortedSet.class);

SortedSet mock = (SortedSet) control.getMock();

b = new Bank(mock);

mock.last();

try{

control.setReturnValue(new Account("Richie Rich",77777,99999.99));

control.replay();

assertEquals(b.getLargest().getBalance(),99999.99,.01);

} catch (Exception e) { fail("testGetLargest should not throw exception"); }

control.verify();

}

}

last() should be called on mock

When to use Mock Objects
• When the real object has non-deterministic

behavior (e.g. a db that is always changing)

• When the real object is difficult to set up

• When the real object has behavior that is hard to
cause (such as a network error)

• When the real object is slow

• When the real object has (or is) a UI

• When the test needs to query the object, but the
queries are not available in the real object

• When the real object does not yet exist

* from http://c2.com/cgi/wiki?MockObject

