
Software Lifecycle Models and

Software Process
• Software lifecycle basics

• Software lifecycle models
– build-and-fix

– waterfall

– rapid prototype

– incremental and iterative

– spiral

• Software process examples
– XP and RUP

• Process improvement
– CMM & ISO9000

Software Lifecycle

• A series of steps through which a software
product progresses

• Lifetimes vary from days to months to years

• Consists of

– people!

– overall process

– intermediate products

– stages of the process

What is a process?

• “Device” for producing a product (get job done)

• Level of indirection

– Process description describes wide class of instances

• Humans create process descriptions to solve

classes of problems

• Thus

– software processes are “devices” for creating and

evolving software products

Intermediate Software Products

• Objectives
– Mark the “end” of phases

– Enable effective reviews

– Specify requirements for next phase
• Note the abstract requirements/design cycle

• Form
– Rigorous

– Machine processible (highly desirable)

• Content
– Specifications, Tests, Documentation

Phases of a Software Lifecycle

• Standard Phases

– Requirements Analysis & Specification

– Design

– Implementation and Integration

– Operation and Maintenance

– Change in Requirements

– Testing throughout

• Phases promote manageability and provide

organization

Build-and-Fix

Build First

Version

Retirement

Operations Mode

Modify until

Client is satisfied

Waterfall1

Requirements

Verify

Retirement

Operations

Test

Implementation
Verify

Design

Req. Change

1. Winston Royce, “Modeling the Development of Large Software Systems”, Westcon 1970

Gantt Chart

• Plan activities

• Allocate resources

• Define dependencies

• MS Project

Rapid Prototyping

Rapid Prototype

Verify

Retirement

Operations

Test

Implementation
Verify

Design

Req. Change

For each build:

Perform detailed

design, implement.

Test. Deliver.

Incremental1 and Iterative2

Requirements

Verify

Retirement

Operations

Verify

Arch. Design

1. Harlan Mills, “Cleanroom Software Engineering”, IEEE Software, 1987

2. Victor Basili and Joe Turner, “Iterative Enhancement”, IEEE Trans. Software Eng., 1975

For each build:

Perform detailed

design, implement.

Test. Deliver.

Incremental
Requirements

Verify

Retirement

Operations

Verify

Arch. Design

Could be staggered

Design Implement Test Deliver

Design Implement Test Deliver

Design Implement Test Deliver

Or consecutive

Design Implement Test Deliver Design Implement Test Deliver

Increments add new features

For each build:

Perform detailed

design, implement.

Test. Deliver.

Iterative
Requirements

Verify

Retirement

Operations

Verify

Arch. Design

Could be minimized or

incorporated into iterations

(common with agile approaches)

Iterations may revisit features

The Spiral Model1

Concept of

Operation

Requirements

Plan

Requirements

OAC

Risk

Assessment

Risk
 It

em
 S

et

Risk
 M

an
ag

em
en

t P
lan

Requirements

Risk

Control

Requirements

Validation

Abstract Specification

 Plan

 Abstract

Specifcation

OAC

Risk

Assessment

Risk

Control

Abstract

Specification

Abstract Specification

Validation

Concrete Specification

 Plan

 Concrete

Specification

OAC

Concrete

Specification

Concrete

Specification Validation

and Verification

Software

Development Plan

Risk

Assessment

Risk

Control

Progress
through
steps

Cumulative
cost

Evaluate alternatives,
identify, resolve risks

Develop, verify
next-level product

Plan next phases

Commit
Review

partition

Determine
objectives,
alternatives,
constraints
(OAC)

1. Barry Boehm, “A Spiral model of Software Development and Enhancement”, SPSE 1985

(Extremely) Simplified Spiral Model

Requirements

Verify

Retirement

Operations

Test

Implementation
Verify

Design

Req. Change

Add a Risk Analysis

step to each phase!

Risk Assessment

Risk Assessment

Risk Assessment

More recently extended into MBASE

(Model-Based Architecting and Software Engineering)

Comparing Engineering

Disciplines
• What is design? What is construction?

– In civil and mechanical engineering, design makes up
about 10% of the project

– Design completed by creative, intelligent people

– Construction completed by skilled but often less
educated people

• Jack Reeves suggested that source code is the
design document and compilers/linkers do the
construction for free.
– What are the implications of this view?

Comparing SD Processes

• Processes vary in complexity and control

Modern Process 1
• Rational Unified Process (RUP)

– iterative and incremental

– use-case driven

– component-based architectures

– visually modeled with UML

– quality verification

– tools based
Employee

name

ID

<<type>>

0..*1

Time Sheet

start Date

end Date

Time Entries

Add Time Entry()

Submit()

Approve()

<<type>>

UNIX Server

TimeTracking

Server

Database

Client PC

GUI

Modern Process 2

• eXtreme Programming (XP)
– lightweight process

– frequent iterations

– Best practices “in the extreme”
• continuous integration

• pair programming

• test-driven development

• refactoring

– popular agile method

XP Practice Coupling1

pair programming

testing

metaphor

continuous integration

on-site customer

collective ownership

planning game

short releases

40 Hour Week

refactoring

coding standards

simple design

1. Beck, Extreme Programming Explained: Embrace Change, 2000

Refactoring

• Improving the structure of code without
changing its behavior

• Removing code smells

Comparing Modern Processes

• RUP vs. XP

RUP

RUP

RUP

XP

XP

XP

Capability Maturity Model

(CMM)
• CMM is not a software lifecycle model ...

– Strategy for improving the software development
process regardless of the process “model” followed

• Basic premise: the use of new software methods alone will not
improve productivity and quality, because software
management is, in part, the cause of problems

– CMM assists organizations in providing the
infrastructure required for achieving a disciplined and
mature process ($$)

• Includes
– technical aspects of software production

– managerial aspects of software production

Capability Maturity Model

(continued)
• Five maturity levels

– 1. initial – ad hoc process

– 2. repeatable process – basic project management

– 3. defined process – process modeling and definition

– 4. managed process – process measurement

– 5. optimizing process – process control and dynamic
improvement

• to move from one stage to the next, the SEI
provides a series of questionnaires and conducts
process assessments that highlight current
shortcomings

ISO 9000

• Further attempt to improve software quality based
on International Standards Organization (ISO)

• ISO 9000 = series of five related standards
– within ISO 9000 standard series ISO 9000-3 focuses on

software and software development

• Basic features:
– stress on documenting the process in both words and

pictures

– requires management commitment to quality

– requires intensive training of workers

– emphasizes measurement

ISO 9000

• Adopted by over 60 countries (USA, Japan,
European Union, ...)

• To be ISO 9000 compliant, a company’s process
must be certified

Process Measures

• Quality (e.g. faults per KLOC)

• Functionality (e.g. function points)

• Productivity (e.g. function points per hour)

• Maintainability (e.g. effort to make change)

• Customer satisfaction (e.g. survey results)

Product Measures

• External Quality (e.g. faults)

• Internal Quality

– Coupling, cohesion, complexity

• Size (e.g. LOC, #classes, #methods)

• Testability (e.g. tests per method)

• Scalability (e.g. users supported)

• Performance (e.g. transactions per second)

