Requirements Engineering

David Janzen

CALPOLY

J

Team Assignments

e Team Osos: Northwest
— Robert Cook, Team Lead
— Pavan Trikutan
— Yeongshnn Ong
— Vicki Lindem
— Pete Corey

 http://wiki.csc.calpoly.edu/307S080s0s

CALPOLY

J

Team Assignments

e Team Paso: Northeast
— Natasha Lemak, Team Lead
— Braydn Reynolds
— Allen Pasch
— Andrew Harrison
— Mark Wazny

 http://wiki.csc.calpoly.edu/307S08paso

CALPOLY

]

Team Assignments

e Team Pismo: Southeast
— Dominic Camargo, Team Lead
— Phillip Dettorre
— Donald Kirker
— Wesley Hamilton
— Matthew Robertson
— David Little

 http://wiki.csc.calpoly.edu/307S08pismo

CALPOLY

J

Team Assignments

e Team Avila: Southwest
— Kevin Finn, Team Lead
— Henry Phan
— Andrew Foong
— Jay Schultz
— Devon Laws

 http://wiki.csc.calpoly.edu/307S08avila

CALPOLY

]

Project Assignments

e Setup Wiki Structure

— Learn to use the Trac Wiki
* See http://trac.edgewall.org/wiki/TracWiki
e Practice in Sandbox

— Add to your wiki homepage

— Create roadmap structure
 see http://wiki.csc.calpoly.edu/brackets/roadmap

CALPOLY

]

Project Assignments

e Requirements

— Add a link to a new requirements page from
your requirements milestone in your roadmap

— Document requirements on this new page

— Document acceptance tests here as well
— Due 4/11/08 (next Friday)

CALPOLY

]

Intro to Software Requirements

* What question do software requirements
answer’

When, where, why, how

What is the system to do?
Who are the system user groups?

Business case tells us why (and perhaps who, when, where).
Project plan tells us when and who.
Architecture tells us how.

CALPOLY

]

Why do we care?

 Requirements issues are among the most commonly
cited for project failure

— See success/failure factors in

http://www.standishgroup.com/sample_research/chaos_1
994 _2.php

e Sprint LARS

e Cost of avoiding/fixing defects increases as project
progresses

— Cheapest in requirements development

CALPOLY

I
IEEE Definition of Requirement

 IEEE Standard Glossary of SE Terminology

1. A condition or capability needed by a user to solve a
problem or achieve an objective.

2. A condition or capability that must be met or
possessed by a system or system component to satisfy
a contract, standard, specification, or other formally
imposed document.

3. A documented representation of a condition or
capability as in 1 or 2.

CALPOLY

J

Types of Requirements

e Business

— High-level objectives of the organization or customer
who requests the system

— Documented 1n a Vision and Scope document

e User

— User goals or tasks that the users must be able to
perform with the product

— Use-cases often used to capture these
— Ex. Make a reservation

CALPOLY

]

Types of Requirements

* Functional

— Specity the software functionality that the developers
must build into the product to enable users to
accomplish their tasks.

— Ex. The system shall mail a confirmation to the user

e Non-functional
— Quality attributes, performance goals, rehiability, ...

— Ex. Reservation request submissions should receive a
response 1n less than 10 seconds

CALPOLY

J

Requirements Documents

- “different organizations might call any of the

following a ‘requirements document;”:
1. Half-page software product vision
2. Two page list of key features
3. 50 page list of detailed end-user-level requj

Product Vision

Feature List
Functional Requirements
Document

4. 250 page exhaustive listing of every visual element on every
screen, input-field-by-input-field descriptions g*jall possible
iInput conditions, all possible system state y
description of every persistent data elem

Functional Requirements
Specification

1. McConnell, IEEE Software, Sept/Oct 2000,
http://www.stevemcconnell.com/ieeesoftware/eic13.htm

CALPOLY

]

Requirements Problems

e Insufficient User Involvement
e Creeping User Requirements
 Ambiguous Requirements

e (Gold Plating

e Minimal Specification

e Overlooked User Classes

e Inaccurate Planning

CALPOLY

]

Excellent Requirements

e Statements

— Complete, correct, feasible, necessary,
prioritized, unambiguous, verifiable

e Specification
— Complete, consistent, modifiable, traceable

e Discussion Question:
— What would you add to the list?

CALPOLY

]

Phases of a Software Lifecycle

e Standard Phases
— Requirements Analysis & Specification
— Design
— Implementation and Integration
— Operation and Maintenance
— Change in Requirements
— Testing throughout

e Phases promote manageability and provide
organization

CALPOLY

]

Requirements Analysis &
Specification

e Problem Definition —> Requirements Specification
— determine exactly what 1s the client (and user) problem
* in their environment - with their environmental constraints

— develop a contract with client
e exactly what the software/computer solution will do

e Difficulties

— client asks for wrong product or developer ‘“knows better”
(want vs need)

— client 1s computer/software illiterate or developer domain
illiterate

— specifications will be ambiguous, inconsistent, incomplete

faVahh KaValws

]

Requirements Analysis &
Specification

e Validation

— extensive specification reviews check that
requirements satisty client wants

— look for ambiguity, consistency,
incompleteness

— check for feasibility, testability

— develop system/acceptance test plan

CALPOLY

J

Requirements Elicitation

e Discovering user requirements

e Passive or Active Elicitation

— Steve McConnell says,

“The most difficult part of requirements
gathering is not the act of recording what
the users want; it is the exploratory,
developmental activity of helping users
figure out what they want.”

CALPOLY

J

Elicitation Interviews

* Do basic research first!
— do NOT ask questions that have been answered
— show you followed up to previous sessions

* Focus your questions

— Beware of broad questions
« Sometimes they can uncover missed requirements
 short, simple, answerable: yes/no preferred

— If complex, ask multi-part questions
— use models / documents as points of reference
— use a parking lot for tangent ideas

D /L5 VA | I I | N 1 1- T
T OIUuUILns Colaioutcd vy Dl Cldl K 1T UlLTCI

CALPOLY

-
What vs. How

 Remember: distinguish “requirements” from
“design’

« Requirements are about “black box” external
behavior of the proposed system
— black box vs white box concepts
— software as transform of input to output

D A5 41as] $+ad] N 1 1T
T OIUulLns colaiouica vy Dl Cldl K 1TUlCL

CALPOLY

-
Feedback

» Give feedback on the answers
— offer an example, “is this what you mean?”
— narrow the question if you must

— do not move on until you understand or
agree to look further

— think like a customer who'll have to live
with this thing you're going to describe

— think like a coder who’ll have to build it!

D /L5 VA | I I | N 1 1- T
T OIUuUILns Colaioutcd vy Dl Cldl K 1T UlLTCI

CALPOLY

-
Main Themes

* You are writing Requirements

 Your job: serve the customer
— be prepared

— make the customer’s job as easy as
possible

« Customer’s job: help you serve them
» Be professional at all times

CALPOLY

]

Use Cases and Scenarios

e Use case: a set of scenarios tied together by
a common user goal

e Scenario: a sequence of steps describing an

interaction between a user and a system
(Fowler)

% O XSO

Make Move

Game Player

CALPOLY

]

Actors
e Actors: roles that users (or systems) play

— Actors carry out use cases
— A single user could play several roles

— Multiple users could play the same role

——C O

Make Move

Game Player

Alex and Katie play tic-tac-toe against each other.

Alex and Katie are each filling the Game Player role.

CALPOLY

J

Scenario
e Scenarios for the ‘Make Move’ use case:

— A Game Player places a symbol on an open
square on the Game Board

— A Game Player places a symbol on an occupied
square on the Game Board
e Original symbol continues to occupy square
e Allow Game Player to select another square

2——C D

Make Move

Game Player

CALPOLY

Use Case Diagram

e Phayer Make Move Space Occupied

<<|nclude>>

View Game Status

Check Game Status
Start Game

View Game Board

CAL POLY

Use Case Diagram

Generalization:

° RelatiOnShipS alternate scenario or

same use case with
extra functionality

l
I
I
I
I
]
1

e Player Make Move Space Occupied
<<|n'clude>>
..<.--<.!D_9|ude:>>
R ——
View Game Status ='= .':l
Start Game I:.: :,l" Check Game Status
View Game Board Include: i N

redundant functionality

CALPOLY

J

Acceptance Test

e Scenario for the ‘Make Move’ use case:

— 2.2.3 A Game Player places a symbol on an occupied
square on the Game Board
e Original symbol continues to occupy square

e Allow Game Player to select another square

e Corresponding acceptance test
— 2.2.3-a

e Player 1 enters ‘X’ in square 3

Player 2 enters ‘O’ in square 3

System prompts player 2 to select different square
Player 2 enters ‘O’ in square 4

Board has ‘X’ in square 3 and ‘O’ in square 4

CALPOLY

