
Design Patterns

David Janzen

Chain of Responsibility Pattern
• Intent: (p. 223)

– Avoid coupling the sender of a request to its receiver by
giving more than one object a chance to handle the request.
Chain the receiving objects and pass the request along the
chain until an object handles it.

• Basic Idea:
– Decouple a request sender from its receiver by allowing

multiple objects the chance to handle a request. Each
object only knows the next object in chain

• Game:
– variation on hot potato

– always pass objects in same order

– each person knows what kind of object to keep
• e.g. candyeater eats candy, jackspinner, ballbouncer,…

Chain of Responsibility Pattern
General Structure

ConcreteChainA

+addChain()
+getChain()
+sendToChain()

ConcreteChainB

+addChain()
+getChain()
+sendToChain()

Sender

+addChain()
+getChain()
+sendToChain()

Chain

+addChain()
+getChain()
+sendToChain()

Chainer

Chain of Responsibility Pattern

: ConcreteChainA

: ConcreteChainB

: Chainer

: Sender

2:

addChain()5:

sendToChain()8:

3:

addChain()6:

sendToChain()9:

1:

addChain()4:

sendToChain()7:

Chain of Responsibility Pattern

dynamically add in the
middle of the chain

: ConcreteChainA

: ConcreteChainC

: ConcreteChainB

: Chainer

: Sender

2:

addChain()5:

getChain()8:

addChain()10:

7:

addChain()9:

3:

addChain()6:

1:

addChain()4:

Chain of Responsibility Pattern
General Structure

ConcreteHandlerA

+HandleRequest()

ConcreteHandlerB

+HandleRequest()

Handler

+HandleRequest()

Client

Chain of Responsibility Pattern
• Handler:

• Chain (defines interface for handling requests and passing them
on to the next object in the chain if not handled)

• ConcreteHandler:
• Sender, Imager, FileList, RestList (handles requests or sends

request to next object in the chain)

• Client:
• Chainer, Sender (sets up the chain and submits the request to be

handled to the first object in the chain)

• Request:
• Optionally might create an abstract request type for more

complex requests

public interface Chain

{

public abstract void addChain(Chain c);

//make this class “point” to c

public abstract void sendToChain(String mesg);

//send request to next object in chain

public Chain getChain();

//return the next object in the chain

}

Chain of Responsibility Pattern

Example from “Java Design Patterns: A Tutorial” by James A. Cooper

public class Imager implements Chain {

private Chain nextChain;

//--

public void addChain(Chain c) {

nextChain = c; //next in chain of resp

}

//--

public void sendToChain(String mesg) {

//if there is a JPEG file with this root name

//load it and display it.

if (findImage(mesg))

loadImage(mesg+".jpg");

else

//Otherwise, pass request along chain

nextChain.sendToChain(mesg);

}

//--

public Chain getChain() {

return nextChain;

}

Chain of Responsibility Pattern

public class Chainer

{

//list of chain members

Sender sender; //gets commands

Imager imager; //displays images

FileList fileList; //highlights file names

ColorImage colorImage; //shows colors

RestList restList; //shows rest of list

public Chainer() {

sender = new Sender();

imager = new Imager(); //add all these to the Frame

fileList = new FileList();

colorImage = new ColorImage();

restList = new RestList();

//set up the chain of responsibility

sender.addChain(imager);

imager.addChain(colorImage);

colorImage.addChain(fileList);

fileList.addChain(restList);

Chain of Responsibility Pattern

Chain of Responsibility Pattern
• When to use:

– When more than one object may handle a request and we

don’t know the handler beforehand

– When we want to decouple a request sender from its

request receivers

– When we want to dynamically change the objects that

might handle a request

• Consequences

– A request might not get handled

– Reduced coupling; neither sender nor receiver know of

the other

What are Design Patterns?

• In its simplest form, a pattern is

a solution to a recurring problem

in a given context

• Patterns are not created, but discovered or

identified

Design Patterns Definition1

• Each pattern is a three-part rule, which

expresses a relation between

– a certain context,

– a certain system of forces which occurs

repeatedly in that context, and

– a certain software configuration which allows

these forces to resolve themselves

1 Dick Gabriel, http://hillside.net/patterns/definition.html

A Good Pattern1

• Solves a problem:

– Patterns capture solutions, not just abstract

principles or strategies.

• Is a proven concept:

– Patterns capture solutions with a track record, not

theories or speculation

1 James O. Coplien, http://hillside.net/patterns/definition.html

A Good Pattern
• The solution isn't obvious:

– Many problem-solving techniques (such as

software design paradigms or methods) try to

derive solutions from first principles. The best

patterns generate a solution to a problem

indirectly--a necessary approach for the most

difficult problems of design.

• It describes a relationship:

– Patterns don't just describe modules, but

describe deeper system structures and

mechanisms.

A Good Pattern

• The pattern has a significant human

component (minimize human intervention).

– All software serves human comfort or quality

of life; the best patterns explicitly appeal to

aesthetics and utility.

Why Patterns?

• Code Reuse is good

– Software developers generally recognize the

value of reusing code

• reduces maintenance

• reduces defect rate (if reusing good code)

• reduces development time

– Code Reuse Pitfalls

• Reusing code blindly (out of context)

• Reusing unproven or untested code

Why Patterns?

• Design Reuse may be even better

– Similar benefits and pitfalls to Code Reuse

– Identifying reuse early in the development

process can save even more time

– Copying proven solutions

– Solutions can be analyzed visually with UML

without complexities of the code

Why Patterns?

• Good designs reduce dependencies/coupling

– Many patterns focus on reducing

dependencies/coupling

– Strongly coupled code

• hard to reuse

• changes have wide effects

– Loosely coupled code

• objects can be reused

• changes have isolated effects

Why Patterns?*

• Common vocabulary and language

– Fundamental to any science or engineering

discipline is a common vocabulary for

expressing its concepts, and a language for

relating them together.

– Patterns help create a shared language for

communicating insight and experience about

recurring problems and their solutions.

* http://hillside.net/patterns

Why Patterns?

• Body of solutions literature

– The goal of patterns within the software

community is to create a body of literature to

help software developers resolve recurring

problems encountered throughout all of

software development.

Why Patterns?

• Encapsulation enables higher reasoning

– Forming a common pattern language for

conveying the structures and mechanisms of

our architectures allows us to intelligibly reason

about them.

Why Patterns?

• Abstract the technology

– The primary focus is not so much on

technology as it is on creating a culture to

document and support sound engineering

architecture and design.

Design Patterns History
• Christopher Alexander (architect)

“A Pattern Language”, 1977

– quality architectural designs can be

• described

• reused

• objectively agreed to be good

– structures solve problems

– multiple structures can solve the same problem

– similarities in these structures can form a pattern
* see www.greatbuildings.com/architects/Christopher_Alexander.html

and http://c2.com/cgi/wiki?ChristopherAlexander

Design Patterns History

• ESPRIT consortium in late 1980’s developed

a pattern-based design methodology inspired

by Alexander’s work

• OOPSLA’87 Kent Beck and Ward

Cunningham introduced idea of identifying

patterns in software engineering

– http://c2.com/cgi/wiki?WardAndKent

– Well known for work in Smalltalk, CRC Cards,

xUnit testing framework, eXtreme Programming,

...

Design Patterns Resources

• “Design Patterns: Elements of Reusable

Object-Oriented Software”

– by Gamma, Helm, Johnson, and Vlissides

– Gang of Four (GoF)

– 1994 Software Productivity Award

• http://hillside.net/patterns/patterns.html

• http://patterndigest.com

• http://wiki.cs.uiuc.edu/PatternStories/

Design Patterns
• GoF grouped patterns into three areas:

– Creational Patterns

• Abstract Factory, Builder, Factory Method,

Prototype, Singleton

– Structural Patterns

• Adapter, Bridge, Composite, Decorator, Façade,

Flyweight, Proxy

– Behavioral Patterns

• Chain of Responsibility, Command, Interpreter,

Iterator, Mediator, Memento, Observer, State,

Strategy, Template Method, Visitor

Design Patterns

• GoF book preceded commercial release of

Java

• Java language designers read GoF

• Hence Java libraries implement many GoF

Design Patterns

– Iterator on Vector or ArrayList

– Observer (interface) and Observable (class)

– WindowAdapter

– Stack

Creational Patterns

• Better ways to create an instance

• Abstract the instantiation process

– hide how class instances are created and combined

– Traditional creation:

• MyType t = new MyType();

– client code is now dependent on MyType

– changing MyType means changing all clients

– clients must know of different ways to create MyType

Structural Patterns

• Ways to combine classes and objects into
larger structures

• Structural Class Patterns use inheritance to
compose interfaces or implementations

– Multiple Inheritance, Adapter

• Structural Object Patterns compose objects
to realize new functionality

– Adapter, Bridge, Composite, Decorator, Façade,
Flyweight, Proxy

Behavioral Patterns

• Ways to deal with algorithms and have
objects communicate

• Behavioral Class Patterns use inheritance to
distribute behavior between classes

– Template Method, Interpreter

• Behavioral Object Patterns compose objects
to distribute behavior

– Mediator, Chain of Responsibility, Observer,
Strategy, Command, State, Visitor, Iterator,
Memento

Ask what changes?
– if algorithm changes: use Strategy

– if only parts of an algorithm change: use Template

Method

– if interaction changes: use Mediator

– if subsystem changes: use Façade

– if interface changes: use Adapter

– if number and type of dependents changes: use Observer

– if state causes behavior changes: use State

– if object to be instantiated changes: use Factory

– if the action an object is requested to perform changes:

use Command

Patterns and Frameworks

• “A framework is an integrated set of

components that collaborate to provide a

commoditized software architecture for a

family of related applications. Mature

frameworks exhibit high pattern density,

making patterns an ideal descriptive tool for

developing, evolving, and understanding

frameworks.”
from “Past, Present, and Future Trends in Software Patterns,” Buschman et al.

