Design Patterns

David Janzen

CALPOLY



J

Chain of Responsibility Pattern
e Intent: (p. 223)

— Avoid coupling the sender of a request to its receiver by
giving more than one object a chance to handle the request.
Chain the receiving objects and pass the request along the
chain until an object handles it.

e Basic Idea:

— Decouple a request sender from its receiver by allowing
multiple objects the chance to handle a request. Each
object only knows the next object in chain

 Game:
— variation on hot potato
— always pass objects in same order

— each person knows what kind of object to keep
e e.g. candyeater eats candy, jackspinner, ballbouncer,...

CALPOLY




ﬁ hai c Resnonsibility P

General Structure

Chain
> +addChain() =
+getChain()
+sendToChain()
S
Sender ConcreteChainA| |ConcreteChainB
+addChain()| [+addChain() +addChain()
+getChain() +getChain() +getChain()
+sendToChain()+sendToChain() | |+sendToChain()
N A A
Chainer

CAL POD




aaaaa

2: » : ConcreteChainA

3: » : ConcreteChainB

B 4:addChaT
=t 5:addChain() ’H
6:addChain() >H

7:sendMFai”Q:sendToC|;?i_n() 9'sendToChaﬂ|]§11)

Quboy




Chain of Responsibility Pattern

: Chainer

1. [ sender
2 » : ConcreteChainA

4:addCha'g[
5.

.]ddChain( )
6:addChJ:J()
dynamically add in tﬁ ’H

middle of the chain

p| : ConcreteChainB

7.

8:getChain() T
] 9:addChain()

Gr_\L POLY T0:addChainy) j ”

: ConcreteChainC

A 4




ﬁ hai c Resnonsibility P

General Structure

Client | | Handler L
+HandleRequest()
JAVAY
ConcreteHandlerA ConcreteHandlerB

| HandleRequest — +HandleRequest
CALPOLY & quest() i quest(



]

Chain of Responsibility Pattern
e Handler:

e Chain (defines interface for handling requests and passing them
on to the next object in the chain if not handled)

e ConcreteHandler:

e Sender, Imager, FileList, RestList (handles requests or sends
request to next object in the chain)

e Client:

e Chainer, Sender (sets up the chain and submits the request to be
handled to the first object in the chain)

* Request:

e Optionally might create an abstract request type for more
complex requests

CALPOLY




I
Chain of Responsibility Pattern

public interface Chain
{
public abstract void addChain(Chain c);
//make this class “point” to c
public abstract void sendToChain (String mesqg) ;
//send request to next object in chain
public Chain getChain();
//return the next object in the chain

}

Example from “Java Design Patterns: A Tutorial” by James A. Cooper

CALPOLY




Chain of Responsibility Pattern

public class Imager implements Chain {
private Chain nextChain;

e —— T
public void addChain(Chain c) {
nextChain = c; //next in chain of resp
}
e
public void sendToChain(String mesg) {
//1f there is a JPEG file with this root name
//load it and display it.
if (findImage (mesqg))
loadImage (mesg+".jpg") ;
else
//Otherwise, pass request along chain
nextChain.sendToChain (mesqg) ;
}
R

public Chain getChain() {
return nextChain;




e ]

Chain of Responsibility Pattern

public class Chainer

{

//1list of chain members

Sender sender; //gets commands

Imager imager; //displays images
FileList fileList; //highlights file names
ColorImage colorImage; //shows colors

RestlList restlist; //shows rest of list
public Chainer () {

sender = new Sender();

imager = new Imager(); //add all these to the Frame
filelList = new FileList();

colorImage = new ColorImage();

restlList = new RestList();

//set up the chain of responsibility
sender.addChain (imager) ;
imager.addChain (colorImage) ;
colorImage.addChain (fileList);
filelList.addChain (restList) ;

CALPOLY




I
Chain of Responsibility Pattern

e When to use:

— When more than one object may handle a request and we
don’t know the handler beforehand

— When we want to decouple a request sender from its
request receivers

— When we want to dynamically change the objects that
might handle a request

e Consequences
— A request might not get handled

— Reduced coupling; neither sender nor receiver know of
the other




I
What are Design Patterns?

 In its simplest form, a pattern 1s

a solution to a recurring problem
In a given context

e Patterns are not created, but discovered or
1dentified

CALPOLY



]

Design Patterns Definition!

e Each pattern 1s a three-part rule, which
expresses a relation between

— a certain context,

— a certain system of forces which occurs
repeatedly 1n that context, and

— a certain software configuration which allows
these forces to resolve themselves

I Dick Gabriel, http://hillside.net/patterns/definition.html

CALPOLY




-
A Good Pattern!

e Solves a problem:

— Patterns capture solutions, not just abstract
principles or strategies.

* [s a proven concept:

— Patterns capture solutions with a track record, not
theories or speculation

I James O. Coplien, http://hillside.net/patterns/definition.html

CALPOLY



-
A Good Pattern

e The solution isn't obvious:

— Many problem-solving techniques (such as
software design paradigms or methods) try to
derive solutions from first principles. The best
patterns generate a solution to a problem
indirectly--a necessary approach for the most
difficult problems of design.

e It describes a relationship:

— Patterns don't just describe modules, but
describe deeper system structures and
mechanisms.

CALPOLY




-
A Good Pattern

e The pattern has a significant human
component (minimize human intervention).

— All software serves human comfort or quality
of life; the best patterns explicitly appeal to
aesthetics and utility.

CALPOLY



I
Why Patterns?

e Code Reuse 1s good

— Software developers generally recognize the
value of reusing code

e reduces maintenance
e reduces defect rate (if reusing good code)

e reduces development time

— Code Reuse Pitfalls

e Reusing code blindly (out of context)

e Reusing unproven or untested code

CALPOLY




I
Why Patterns?

* Design Reuse may be even better
— Similar benefits and pitfalls to Code Reuse

— Identifying reuse early in the development
process can save even more time

— Copying proven solutions

— Solutions can be analyzed visually with UML
without complexities of the code

CALPOLY



I
Why Patterns?

* Good designs reduce dependencies/coupling

— Many patterns focus on reducing
dependencies/coupling

— Strongly coupled code

e hard to reuse

e changes have wide effects
— Loosely coupled code

e objects can be reused

e changes have 1solated effects

CALPOLY




[
Why Patterns?*

 Common vocabulary and language

— Fundamental to any science or engineering
discipline 1s a common vocabulary for
expressing its concepts, and a language for
relating them together.

— Patterns help create a shared language for
communicating 1nsight and experience about
recurring problems and their solutions.

* http://hillside.net/patterns

CALPOLY




I
Why Patterns?

e Body of solutions literature

— The goal of patterns within the software
community 1s to create a body of literature to
help software developers resolve recurring
problems encountered throughout all of
software development.

CALPOLY



I
Why Patterns?

e Encapsulation enables higher reasoning

— Forming a common pattern language for
conveying the structures and mechanisms of
our architectures allows us to intelligibly reason
about them.

CALPOLY



I
Why Patterns?

e Abstract the technology

— The primary focus 1s not so much on
technology as it is on creating a culture to
document and support sound engineering
architecture and design.

CALPOLY



Design Patterns History
e Christopher Alexander (architect)
“A Pattern Language”, 1977

— quality architectural designs can be
 described

* reused

e objectively agreed to be good
— structures solve problems
— multiple structures can solve the same problem

— similarities 1n these structures can form a pattern

* see www.greatbuildings.com/architects/Christopher_Alexander.html

C’—\L POLY and http://c2.com/cgi/wiki?ChristopherAlexander




-]
Design Patterns History

 ESPRIT consortium 1n late 1980°s developed
a pattern-based design methodology inspired
by Alexander’s work

e OOPSLA’87 Kent Beck and Ward
Cunningham introduced 1dea of 1dentifying
patterns 1n software engineering

— http://c2.com/cgi/wiki1?Ward AndKent

— Well known for work in Smalltalk, CRC Cards,
xUnit testing framework, eXtreme Programming,

CALPOLY




]

Design Patterns Resources

e “Design Patterns: Elements of Reusable
Object-Oriented Software”

— by Gamma, Helm, Johnson, and Vlissides

— Gang of Four (GoF)
— 1994 Software Productivity Award

 http://hillside.net/patterns/patterns.html

 http://patterndigest.com

 http://wiki.cs.uiuc.edu/PatternStories/

CALPOLY




]

Design Patterns
e GOF grouped patterns into three areas:

— Creational Patterns

e Abstract Factory, Builder, Factory Method,
Prototype, Singleton

— Structural Patterns
* Adapter, Bridge, Composite, Decorator, Fagade,
Flyweight, Proxy
— Behavioral Patterns

e Chain of Responsibility, Command, Interpreter,
Iterator, Mediator, Memento, Observer, State,
Strategy, Template Method, Visitor

CALPOLY




]

Design Patterns

e GoF book preceded commercial release of
Java

e Java language designers read GoF

e Hence Java libraries implement many GoF
Design Patterns
— Iterator on Vector or ArrayList
— Observer (interface) and Observable (class)
— WindowAdapter
— Stack

CALPOLY




J

Creational Patterns

e Better ways to create an instance

e Abstract the instantiation process
— hide how class instances are created and combined

— Traditional creation:
e MyType t =new MyType();

— client code is now dependent on MyType
— changing MyType means changing all clients

— clients must know of different ways to create MyType

CALPOLY



]

Structural Patterns

e Ways to combine classes and objects 1into
larger structures

e Structural Class Patterns use inheritance to
compose interfaces or implementations

— Multiple Inheritance, Adapter

e Structural Object Patterns compose objects
to realize new functionality

— Adapter, Bridge, Composite, Decorator, Facade,
Flyweight, Proxy

CALPOLY




J

Behavioral Patterns

 Ways to deal with algorithms and have
objects communicate

e Behavioral Class Patterns use inheritance to
distribute behavior between classes
— Template Method, Interpreter

* Behavioral Object Patterns compose objects
to distribute behavior

— Mediator, Chain of Responsibility, Observer,
Strategy, Command, State, Visitor, Iterator,
Memento

CALPOLY




I
Ask what changes?

— 1f algorithm changes: use Strategy

— 1f only parts of an algorithm change: use Template
Method

— 1f 1interaction changes: use Mediator

— 1f subsystem changes: use Facade

— 1f interface changes: use Adapter

— 1f number and type of dependents changes: use Observer
— 1f state causes behavior changes: use State

— 1f object to be instantiated changes: use Factory

— 1f the action an object 1s requested to perform changes:
use Command

CALPOLY




J

Patterns and Frameworks

e “A framework 1s an integrated set of
components that collaborate to provide a
commoditized software architecture for a
tamily of related applications. Mature
frameworks exhibit high pattern density,
making patterns an ideal descriptive tool for
developing, evolving, and understanding
frameworks.”

from “Past, Present, and Future Trends in Software Patterns,” Buschman et al.

CALPOLY




