Testing with Mock Objects

* A mock object is an object created to stand in for
an object that your code will be collaborating
with. Your code can call methods on the mock
object, which will deliver results as set up by
your tests.

 In other words, in a fine-grained unit test, you
want to test only one thing. To do this, you can
create mock objects for all of the other things
that your method/object under test needs to
complete its job.



Testing with Mock Objects

» Example

— Suppose we have a system that allows us
to transfer money from one bank account
to another.

— We want to test just the transfer method
which resides in the AccountService class
and uses an AccountManager to retrieve

Accounts, all of which are stored in a
database.

AccountService

» AccountManager [—_

\

Account

-

DB




Testing with Mock Objects

/ffrom JUnit in Action
public class AccountService {
private AccountManager accountManager;
public void setAccountManager(AccountManager manager) {
this.accountManager = manager;
}
public void transfer(String senderld, String beneficiaryld, long amount) {
Account sender = this.accountManager.findAccountForUser(senderld);
Account beneficiary = this.accountManager.findAccountForUser(beneficiaryld);

sender.debit(amount);
beneficiary.credit(amount);

this.accountManager.updateAccount(sender);
this.accountManager.updateAccount(beneficiary);




Testing with Mock Objects

//from JUnit in Action

public interface AccountManager{
Account findAccountForUser(String userld);
void updateAccount(Account account);

}

« We assume there is a class that
implements the AccountManager
Interface and interacts with the
database.

» We want to create a mock object in
place of the real thing.

» Account is simple enough that we will
use the actual class.




Testing with Mock Objects

//from JUnit in Action

import java.util.Hashtable;

public class MockAccountManager implements AccountManager {
private Hashtable accounts = new Hashtable();
public void addAccount(String userld, Account account)

{

this.accounts.put(userld, account);

}

public Account findAccountForUser(String userld)

{

return (Account) this.accounts.get(userld);

}

public void updateAccount(Account account)

{
// do nothing

}




Testing with Mock Objects

/[from JUnit in Action
public class TestAccountService extends TestCase{
public void testTransferOk() {
MockAccountManager mockAccountManager =
new MockAccountManager();
Account senderAccount = new Account("1", 200);
Account beneficiaryAccount = new Account("2", 100);

mockAccountManager.addAccount("1", senderAccount);
mockAccountManager.addAccount("2", beneficiaryAccount);

AccountService accountService = new AccountService();
accountService.setAccountManager(mockAccountManager);
accountService.transfer("1", "2", 50);

assertEquals(150, senderAccount.getBalance());
assertEquals(150, beneficiaryAccount.getBalance());




Testing with Mock Objects

» Tests use production code.

« Sometimes a test pushes you to change
your production code to make it more
testable, usually making it more flexible
and less coupled to other objects.

» Mock Objects are notorious for improving
your production code.



EasyMock
EasyMock is a third-party library for
simplifying creating mock objects
Download EasyMock1.2 for Javai.3
from www.easymock.org

— EasyMock 2.0 depends on Java 1.5
Extract download | '
Add easymock.jar to proje :

Default output Folder:




Testing Bank with EasyMock

package bank;
import java.util.Collection;

import org.easymock.MockControl; <——= | Import MockControl

import junit.framework.TestCase;
public class TestBank extends TestCase {
private Bank b;
private MockControl control;
private Collection mock;
protected void setUp() {
control = MockControl.createControl(Collection.clag"—
mock = (Collection) control.getMock();
b = new Bank(mock);

}

Collection 1s mock.
We want to test Bank,
not Collection

public void testNumAccounts() { Recording what we we eXpect:
mock.size(); <i i .
control.setReturnValue(7); size() should be called, returning 7

control.replay(); <= | Turn on mock with replay()

assertEquals(b.getNumAccounts(),7);

control.verify(); <— | Check expectations with verify()




Testing getLargest() with
package bank; EaS¥MOGK
import java.util.SortedSet;

import org.easymock.MockControl;
import junit.framework.TestCase;
public class TestBank extends TestCase {

public void testGetlLargest() {
control = MockControl.createControl(SortedSet.class);
SortedSet mock = (SortedSet) control.getMock();
b = new Bank(mock);

mock.last(); <—= | last() should be called on mock
try{

control.setReturnValue(new Account("Richie Rich",77777,99999.99));
control.replay();
assertEquals(b.getLargest().getBalance(),99999.99,.01);
} catch (Exception e) { fail("testGetLargest should not throw exception"); }
control.verify();




When to use Mock Objects

When the real object has non-deterministic
behavior (e.g. a db that is always changing)

When the real object is difficult to set up

When the real object has behavior that is
hard to cause (such as a network error)

W
W
W

nen t
nen t

nen

ne real object is slow
ne real object has (or is) a Ul

ne test needs to query the object, but

the queries are not available in the real object
When the real object does not yet exist
* from http://c2.com/cgi/wiki?MockObject



