
0 7 4 0 - 7 4 5 9 / 0 7 / $ 2 5 . 0 0 © 2 0 0 7 I E E E J u l y / A u g u s t 2 0 0 7 I E E E S O F T W A R E 3 1

focus

Since the mid-’90s, many software systems—
including major parts of the Java and .NET li-
braries and many middleware platforms—have
been developed with the conscious awareness of
patterns. Sometimes developers applied these
patterns selectively to address specific challenges
and problems. Other times, they used patterns
holistically to help construct software systems,
from initially defining baseline architectures to
finally realizing fine-grained details. Knowledge
and conscious application of patterns has be-
come a valuable commodity for software
professionals.

Much has changed since Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlis-

sides (“the Gang of Four” or “GoF”) published
Design Patterns, the most popular book on pat-
terns.1 The technology landscape has shifted,
software design approaches have evolved and
expanded, our understanding of development
processes has matured, and we know more

about documenting and applying patterns to
software development. Ironically, Design Pat-
terns is still so popular and influential that
many software developers are unaware how
much the field has matured or where to find
pattern publications that cover a broader range
of domains and technologies.

The pattern community has long aimed to
document and promote good software engi-
neering practices. This article summarizes the
breadth and depth of the patterns in practice
to help software developers and managers un-
derstand where the field has been and where
it’s headed, so that you can use patterns in
your own projects.

A brief history of software patterns
Patterns haven’t always been as popular or

pervasive as they are now. Although the late ’80s
and early ’90s saw isolated research on software
patterns, patterns didn’t enter the mainstream

Past, Present,
and Future Trends
in Software Patterns

F
or more than a decade, patterns have influenced how software archi-
tects and developers create computing systems. Design-focused pat-
terns provide a vocabulary for expressing architectural visions and
clear, concise representative designs and detailed implementations. Pre-

senting software pieces in terms of their constituent patterns also lets developers
communicate more effectively, with greater conciseness and less ambiguity.

software patterns

Frank Buschmann, Siemens

Kevlin Henney, Curbralan

Douglas C. Schmidt, Vanderbilt University

Software patterns
influence how
developers design
and implement
computing systems.
Examining software
patterns’ past,
present, and future
trends can help
developers improve
their projects.

Authorized licensed use limited to: Cal Poly State University. Downloaded on January 9, 2010 at 01:00 from IEEE Xplore. Restrictions apply.

Patterns are
generally

gregarious,
in that

they form
relationships

with other
patterns.

3 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

until Design Patterns was published. The book
described 23 patterns derived largely from the
authors’ experiences developing single-threaded,
object-oriented, user interface frameworks in
Smalltalk and C++.

Design Patterns remains the most popular
and influential pattern work. Numerous books
and articles have addressed GoF patterns in
various ways. Some publications discuss imple-
menting the patterns in other programming
languages, such as C# and Java. Other publi-
cations rework and integrate GoF patterns for
specific application contexts, such as distrib-
uted computing,2–4 security,5,6 and real-time
embedded systems.7–9

At the 1999 OOPSLA (Object-Oriented Pro-
gramming, Systems, Languages, and Applica-
tions) conference, James Burke noted that his-
tory rarely happens in the right order or at the
right time—the historian’s job is to make it ap-
pear as if it did. Likewise, although we sum-
marize key trends from two decades of pat-
terns research, our list is far from exhaustive.
For more comprehensive references, see http://
hillside.net/patterns.

Stand-alone patterns and pattern collections
Inspired by the GoF’s success, much of the

popular patterns research in the mid-to-late ’90s
focused on stand-alone patterns and pattern col-
lections. Stand-alone patterns are “point solu-
tions,” which address relatively bounded prob-
lems that arise in specific contexts. Examples of
popular stand-alone patterns include these:

■ Iterator offers aggregate traversal without
exposing aggregate representation details
to callers.

■ Strategy captures pluggable behavior.
■ Wrapper Facade encapsulates an existing

procedural API’s functions and data
within more concise, robust, portable, and
cohesive object-oriented interfaces.

Any significant software design inevitably
includes many patterns, however, which makes
stand-alone patterns unusual in practice. A pat-
tern collection is the most obvious presentation
of multiple patterns. The most ambitious pat-
tern collection to date is Grady Booch’s ongo-
ing work on the Handbook of Software Archi-
tecture (www.booch.com/architecture), which
references approximately 2,000 patterns. Most
pattern collections are much more modest in

size and ambition, often numbering tens of pat-
terns and focusing on a particular kind of prob-
lem, context, or system.

Many stand-alone patterns were initially
created for—and honed in—writers’ work-
shops at various Pattern Language of Program-
ming (PLoP) conferences. In a writers’ work-
shop, authors read each others’ patterns and
discuss their strengths and weaknesses to help
improve content and style. You can find the
most mature patterns from these conferences in
Addison-Wesley’s Pattern Languages of Pro-
gram Design books or in the online PLoP con-
ference proceedings.

Pattern relationships
Patterns that represent the foci for discus-

sion, point solutions, or localized design ideas
can be used in isolation with some success.
Patterns are generally gregarious, however, in
that they form relationships with other pat-
terns. Any given application or library will
thus use many related patterns. The most com-
mon types of pattern relationships include
complements, compounds, and sequences.

Pattern complements. In these, one pattern pro-
vides either the missing ingredient for another
pattern or an alternative solution to a related
problem. Cooperative complements aim to
make the resulting design more complete and
balanced. For example, Disposal Method com-
plements Factory Method by addressing object
destruction and creation in the same design.
This complementary combination supports de-
signs that encapsulate resource life-cycle poli-
cies, such as pooling. Patterns can also compete
with each other. For example, Batch Method,
an alternative to Iterator, can access an aggre-
gate object’s elements without exposing its un-
derlying implementation. Batch Method is
more suitable for distributed environments
(where remote access makes using a conven-
tional Iterator cost-prohibitive) because it ac-
cesses an aggregate’s elements in bulk, reduc-
ing round-trip network costs.

Pattern compounds. These capture recurring
subcommunities of patterns that are common
and identifiable enough that software develop-
ers can treat them as a single decision in re-
sponse to a recurring problem. For example,
applying two patterns together, such as a
Command implemented as a Composite, is so

Authorized licensed use limited to: Cal Poly State University. Downloaded on January 9, 2010 at 01:00 from IEEE Xplore. Restrictions apply.

common that you can name the patterns as a
single entity, such as Composite Command.
Another example is Batch Iterator, which joins
two complementary patterns, Iterator and
Batch Method, to remotely access the elements
of aggregates with large numbers of elements.
A Batch Iterator refines an Iterator’s position-
based traversal with a Batch Method for ac-
cessing many, but not all, elements.

Pattern sequences. These generalize the pro-
gression of patterns and show how to establish
a design by joining predecessor patterns to
form part of each successive pattern’s context.
For example, in our previous work, we pre-
sented a communication-middleware pattern
sequence that joins the Broker, Layers, Wrap-
per Facade, Reactor, Acceptor-Connector,
Half-Sync/Half-Async, Monitor Object, Strat-
egy, Abstract Factory, and Component Config-
urator patterns.2 A pattern sequence captures
how a design or situation unfolds pattern by
pattern. You can also illustrate such a progres-
sion with a pattern story, which is a concrete
example of applying a pattern sequence.

Pattern languages
As early as 1995, leading authors in the pat-

tern community began documenting groups of
patterns for specific software development do-
mains, particularly telecommunications systems.
As the first Pattern Languages of Program De-
sign books showed, these patterns were more
closely related than the earlier stand-alone pat-
terns and pattern collections. In fact, some were
so closely related that they didn’t exist in isola-
tion, so authors organized them as pattern lan-
guages in which each pattern built on and wove
together other patterns in the language. We can
view pattern languages as the logical extrapola-
tion of the pattern relationships described previ-
ously. Likewise, we view pattern relationships as
constrained and simplified aspects and subsets of
pattern languages.

Pattern languages aim to provide holistic
support for using patterns to develop software
for specific technical or application domains,
such as e-commerce or communication mid-
dleware. Accordingly, they enlist multiple pat-
terns for each potential problem and weave
them together to define a generative, domain-
specific, and pattern-oriented software devel-
opment process.

Many pattern languages are elaborations and

decompositions of stand-alone patterns and pat-
tern sequences. It’s only natural that these lan-
guages build on—and recursively unfold and
strengthen—the core qualities of their consti-
tuent patterns. For an example, see Remoting
Patterns,3 which decomposes the Broker pat-
tern10 into a fully fledged description of modern
communication middleware architectures. Bro-
ker couldn’t be that expressive when it was de-
scribed as a stand-alone pattern, but the Remot-
ing pattern language revealed this generativity.

Domains and technologies
documented by patterns

From the start, patterns and frameworks
have been intimately connected, demonstrated
by the many framework examples Design Pat-
terns used to motivate patterns. A framework is
an integrated set of components that collabo-
rate to provide a commoditized software archi-
tecture for a family of related applications. Ma-
ture frameworks exhibit high pattern density,
making patterns an ideal descriptive tool for de-
veloping, evolving, and understanding frame-
works. Beyond the interest in frameworks, the
following domains and technologies are popu-
lar foci for pattern authors.

Distributed computing. Our previous work pres-
ents an extensive pattern language for building
distributed software systems.2 The pattern lan-
guage connects more than 250 patterns that
address topics ranging from defining and se-
lecting an appropriate baseline architecture
and communication infrastructure to specify-
ing component interfaces and their implemen-
tations and interactions. The pattern language
also addresses key technical aspects such as
adaptation and extension, concurrency, data-
base access, event handling, synchronization,
and resource management.

Language- and domain-specific idioms. Several
programming styles have evolved and emerged
over the last decade, including aspect-oriented
software development, domain-driven design,
model-driven software development, and gener-
ative programming. Each has its own patterns
and best practices that distinguish programming
in it from programming in other styles. Patterns
and pattern collections exist for these styles.
Programming-language idioms have been a
common focus for published patterns, from
Smalltalk to Python and from C++ to C#.

J u l y / A u g u s t 2 0 0 7 I E E E S O F T W A R E 3 3

Authorized licensed use limited to: Cal Poly State University. Downloaded on January 9, 2010 at 01:00 from IEEE Xplore. Restrictions apply.

Fault tolerance and management. As we increas-
ingly integrate software into mission- and safety-
critical systems, we need robust techniques to
meet user dependability requirements. Fault tol-
erance and management patterns have therefore
been an active focus for the past decade. Several
recent books contain patterns and pattern lan-
guages that address fault tolerance and fault
management for systems with stringent opera-
tional requirements.4,7

Security. This has become a popular topic for
patterns—and software systems in general. For
example, Security Patterns documents a range
of patterns and pattern languages for security-
related areas such as authentication, authoriza-
tion, integrity, and confidentiality.5 Many of
those patterns were documented in earlier pat-
tern publications such as PLoP conference pro-
ceedings. Another recent text, Core Security
Patterns, covers networked software security.6

Embedded systems. Increasingly, applications
such as pacemakers, power-plant controllers,
and flight-critical avionics systems embed intelli-
gence in physical devices and systems. Because
these applications are inextricably connected to
the physical environment, developers must de-
sign them to satisfy physical demands and limi-
tations—such as dynamics, noise, power con-
sumption, and physical size—in a timely manner.
Research in this area documents patterns for ad-
dressing these constraints without losing the ben-
efits of abstraction.7,8

Process and organizational structure. Much pattern
language research has focused on improving
software development processes and organiza-
tions. Some recent books address certain types of
software development processes, such as distrib-
uted, agile, test-driven, and domain-driven soft-
ware development, as well as software refactor-
ing and reengineering.11,12 Organizational
Patterns of Agile Software Development inte-
grates existing patterns on software develop-
ment processes and organizations into an in-
terconnected pattern language.13

Education. Patterns and pattern languages are
popular vehicles for learning the art of teach-
ing programming and software engineering. A
PLoPD book compiles several publications in
this area,14 as does the Pedagogical Patterns
Project (www.pedagogicalpatterns.org), which

provides a forum for disseminating and dis-
cussing teaching patterns, with a focus on
teaching effective software practice.

Where patterns are now
In one sense, the patterns community has met

its goal of documenting and promoting good
software engineering practices. After more than
a decade of experience in mining, documenting,
and applying patterns, the community has es-
tablished patterns in mainstream software de-
velopment practice. Many production software
projects and university curricula consciously use
patterns. Moreover, there’s much more experi-
ence with the format used to document patterns,
such as a deeper appreciation of the importance
of capturing the forces that shape designs,15

compared with the format used in Design Pat-
terns. We expect these trends to continue as de-
velopers increasingly understand the core pat-
terns and the wealth of patterns and pattern
languages in the broader literature.

Although many software systems have suc-
ceeded by intentionally applying patterns, fail-
ures have also occurred due to common misun-
derstandings about patterns—including what
they are and are not to their properties, pur-
pose, target audience, benefits, and drawbacks.
The pattern community has long sought to un-
derstand the underlying theories, forms, and
methodologies of patterns and pattern lan-
guages (and their associated concepts) to help
codify knowledge about and effective applica-
tion of software patterns. The largest work in
this area, Pattern-Oriented Software Architec-
ture Volume 5, integrates many facets of the
pattern concept into a coherent whole.15

Compared to the initial wave of pattern users
after Design Patterns was published, software
developers seem to better understand patterns
than before, in terms of their experience using
patterns effectively on software projects and
their understanding of various aspects of the
pattern concept. The published patterns and
pattern languages have also generally increased
in quality. Most patterns and pattern languages
published in the past several years are more ex-
pressive, comprehensive, precise, and readable
than those published earlier.

Where patterns may go
Many software developers are now familiar

with patterns and applying them in their do-
mains, begging the question, “What is left to

3 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

The patterns
community

has met its goal
of documenting
and promoting
good software
engineering
practices.

Authorized licensed use limited to: Cal Poly State University. Downloaded on January 9, 2010 at 01:00 from IEEE Xplore. Restrictions apply.

say about patterns?” Since 1996, we’ve been
observing trends that shape the pattern litera-
ture and community, as well as forecasting the
future of patterns as part of our work on the
Pattern-Oriented Software Architecture books.
So, we’ve made conjectures on future trends
given the benefit of hindsight and our experi-
ences discovering, documenting, and applying
patterns in practice.

We expect to see software developers docu-
ment more technology- and domain-specific
patterns and pattern languages. Software de-
velopment’s technologies and domains aren’t
all addressed by patterns yet—and it might
take decades to cover them all. In particular,
patterns capture experience, and for newer do-
mains and technologies, developers must first
gain, evaluate, and codify this experience be-
fore they can document effective patterns.
Here, we predict which domains and tech-
nologies developers will address first.

Service-oriented architecture
SOA is a style of organizing and using dis-

tributed capabilities that different organiza-
tions or groups control and own. SOA isn’t a
new concept, but it has become a buzzword in
recent years. The approach builds on principles
and technologies from distributed computing
and enterprise system integration, drawing
from a spectrum of existing patterns and pat-
tern languages.16,17 However, some SOA tech-
nologies—such as business process modeling,
service orchestration, and ultra-large-scale sys-
tems—are still unexplored and not covered by
the pattern literature.

Generative software technologies
Most patterns documented since the early

’90s have been mined from object-oriented
software written in third-generation program-
ming languages. Patterns and pattern lan-
guages, however, have already started to influ-
ence and support other software development
approaches, particularly aspect-oriented and
model-driven software development. We mea-
sure an approach’s maturity and acceptance in
terms of the degree to which authors publish
its patterns and best practices. Developers have
tried to capture model-driven software devel-
opment patterns associated with process and
organization, domain modeling, tool architec-
ture, and application platform development.
We expect that patterns and pattern languages

will have the same influence on aspect-oriented
software development.

Distributed real-time and embedded systems
Developing high-quality distributed real-time

and embedded systems is hard—harder in fact
than developing traditional real-time and em-
bedded systems—and somewhat of a “black
art.” A forthcoming book documents patterns
for developing distributed real-time and embed-
ded software based on material from pattern-
writing workshops.9 We expect to see more pat-
terns for such systems because progress in this
domain is essential for developing viable mis-
sion- and safety-critical applications.

Quality of service for COTS-based
distributed systems

To reduce development cycle time and cost,
projects are increasingly developing distributed
systems using multiple layers of COTS hard-
ware, operating systems, and middleware com-
ponents. It’s hard, however, to configure COTS-
based systems that can simultaneously satisfy
multiple QoS properties, such as security, time-
liness, and fault tolerance. As developers and in-
tegrators continue to master the complexities of
providing end-to-end QoS guarantees, we ex-
pect to see an increase in documented patterns
that help others configure, monitor, and control
COTS-based distributed systems that possess a
range of interdependent QoS properties.

Mobile systems
Wireless networks have become pervasive,

and embedded computing devices are becom-
ing ever smaller, lighter, and more capable.
Likewise, you can now access Internet services,
from Web browsing to online banking, from
mobile systems. Mobile systems present many
challenges, however, such as managing low
and variable bandwidth and power, adapting
to frequent disruptions in connectivity and
service quality, diverging protocols, and main-
taining cache consistency across disconnected
network nodes. We expect that experienced
mobile-systems developers will document their
expertise in pattern form to help meet the
growing demand for best practices in this area.

Software architecture
Despite an increase in documented pattern

languages, the software industry has no paral-
lel to other design disciplines’ comprehensive

J u l y / A u g u s t 2 0 0 7 I E E E S O F T W A R E 3 5

Authorized licensed use limited to: Cal Poly State University. Downloaded on January 9, 2010 at 01:00 from IEEE Xplore. Restrictions apply.

3 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Given the
growing

demand for
electronic

collaboration
support, we
expect to see
more patterns

in HCI in the
near future.

handbooks. Although the existing patterns liter-
ature has steadily progressed toward creating
handbooks for software engineers, the final goal
hasn’t been reached. As we mentioned earlier, the
Handbook of Software Architecture contains
thousands of patterns, exposing their essential
roles and relationships and allowing compar-
isons across domains and architectural styles.

Group interaction
Although many developers have published

human-computer interaction patterns in recent
years, we don’t have an integrated view of these
patterns yet. Moreover, patterns don’t yet cover
all areas of group interaction in an electronic
environment—for example, virtual worlds and
massively multiplayer games. Given the grow-
ing demand for electronic collaboration sup-
port, we expect to see more patterns and pat-
tern languages in HCI in the near future.

Web 2.0
The Web increasingly provides the context

for more dynamic and open business models,
where harnessing collective intelligence becomes
the means of business and the next-generation
Web (that is, Web 2.0) becomes the medium.
Tim O’Reilly’s initial set of Web 2.0 patterns
(www.oreillynet.com/pub/a/oreilly/tim/
news/2005/09/30/what-is-web-20.html) cap-
tures some key emerging and proven practices.

Business transaction
and e-commerce systems

Many business information systems—such
as those for accounting, payroll, inventory, and
billing—are based on transactions. The rules for
processing transactions are complex and must
be flexible to reflect new business practices and
mergers. Business systems must also handle in-
creasingly large volumes of transactions online.
The meteoric growth of e-commerce on the Web
has exposed many business-to-business systems
directly to consumers. Despite these systems’
importance, relatively little has been written
about their robust and secure analysis, architec-
ture, or patterns.

Process and organizational structure
The growing adoption of agile development

processes suggests that the corresponding pat-
tern literature will continue to grow. Some work
will focus on macroprocess aspects, such as over-
all life-cycle and business interaction, and some

will focus on microprocess aspects, such as test-
driven development, refactoring, and tool use.

The Gang of Four
Many books and articles address the GoF

patterns, with no end in sight. Authors will con-
tinue meeting the demand for ruminations on the
GoF work—from essays on missing ingredients,
alternative solutions, and the patterns’ proper
scope to discussions about whether a certain pat-
tern is outdated or isn’t a pattern at all. There’s
also talk of a second edition of Design Patterns,
although a publication date hasn’t been finalized.

Pattern theory
Work on the theory underlying pattern

concepts will continue, focusing on better un-
derstanding the known facets, such as pattern
sequences, and exploring new views, such as
problem frames (which capture, describe, and
name recurring types of problems). Although
there’s still much scope for consolidating, clari-
fying, and communicating theoretical concepts,
we believe that the most interesting trends will
be associated with the domains in which pat-
terns are documented, rather than in theory.

C ertainly, authors will publish patterns
and pattern languages for areas other
than those we’ve mentioned—we just

consider these topics the most promising. Nat-
urally, our predictions include a healthy dose
of uncertainty and are based on our knowl-
edge of the pattern community, its ongoing
and planned interests and research activities
(insofar as we’re aware of them), and the fu-
ture directions we’re involved with.

References
1. E. Gamma et al., Design Patterns: Elements of Reusable

Object-Oriented Software, Addison-Wesley, 1994.
2. F. Buschmann, K. Henney, and D. Schmidt, Pattern-

Oriented Software Architecture Vol. 4: A Pattern Lan-
guage for Distributed Computing, John Wiley & Sons,
2007.

3. M. Voelter, M. Kircher, and U. Zdun, Remoting Pat-
terns, John Wiley & Sons, 2004.

4. G. Utas, Robust Communications Software: Extreme
Availability, Reliability, and Scalability for Carrier-
Grade Systems, John Wiley & Sons, 2005.

5. M. Schumacher et al., Security Patterns: Integrating Secu-
rity and Systems Engineering, John Wiley & Sons, 2006.

6. C. Steel et al., Core Security Patterns: Best Practices
and Strategies for J2EE, Web Services, and Identity
Management, Prentice Hall, 2006.

7. M.J. Pont, Patterns for Time-Triggered Embedded Sys-
tems: Building Reliable Applications with the 8051

Authorized licensed use limited to: Cal Poly State University. Downloaded on January 9, 2010 at 01:00 from IEEE Xplore. Restrictions apply.

J u l y / A u g u s t 2 0 0 7 I E E E S O F T W A R E 3 7

Family of Microcontrollers, Addison-Wesley, 2001.
8. J. Noble and C. Weir, Small Memory Software: Patterns

for Systems with Limited Memory, Addison-Wesley,
2000.

9. L. DiPippo and C.D. Gill, Design Patterns for Distrib-
uted Real-Time Embedded Systems, Springer, to be pub-
lished in 2007.

10. F. Buschman et al., Pattern-Oriented Software Architec-
ture Vol. 1: A System of Patterns, John Wiley & Sons,
1996.

11. E. Evans, Domain-Driven Design: Tackling Complexity
in the Heart of Software, Addison-Wesley, 2004.

12. G. Meszaros, xUnit Test Patterns: Refactoring Test
Code, Addison-Wesley, 2007.

13. J. Coplien and N. Harrison, Organizational Patterns of
Agile Software Development, Prentice Hall, 2005.

14. D. Manolescu, M. Voelter, and J. Noble, Pattern Lan-
guages of Program Design 5, Addison-Wesley, 2006.

15. F. Buschmann, K. Henney, and D.C. Schmidt, Pattern-
Oriented Software Architecture Vol. 5: On Patterns and
Pattern Languages, John Wiley & Sons, 2007.

16. M. Fowler, Patterns of Enterprise Application Architec-
ture, Addison-Wesley, 2003.

17. G. Hohpe and B. Woolf, Enterprise Integration Pat-
terns: Designing, Building, and Deploying Messaging
Solutions, Addison-Wesley, 2004.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

Douglas C. Schmidt is a computer science professor and the associate chair of Van-
derbilt University’s Computer Science and Engineering program. He’s also chief technology offi-
cer for PrismTech and a visiting scientist at the Software Engineering Institute. He received his
PhD in computer science from the University of California, Irvine. He’s coauthored three vol-
umes of Wiley’s Pattern-Oriented Software Architecture book series. He’s a member of the
IEEE. Contact him at the Inst. for Software Integrated Systems, 2015 Terrace Pl., Vanderbilt
Univ., Nashville, TN 37064; d.schmidt@vanderbilt.edu.

About the Authors

Frank Buschmann is a principal engineer at Siemens Corporate Technology in Mu-
nich. His research interests include object technology, software platforms and product lines,
application frameworks, and specifically patterns. He received a diploma in computer science
from the Universität Dortmund, Germany. He’s coauthored four volumes in Wiley’s Pattern-
Oriented Software Architecture book series. Contact him at Siemens AG, Corporate Technology,
Software and Eng., CT SE 2, Otto-Hahn Ring 6, 81739 Munich, Germany; frank.buschmann@
siemens.com.

Kevlin Henney is a UK-based independent consultant and trainer for telecommunica-
tions, information services, logistics, and finance organizations. His research interests include
programming languages, object orientation, patterns, software architecture, and the develop-
ment process. He received his MSc in parallel computer systems from the University of the West
of England (formerly Bristol Polytechnic). He’s coauthored two volumes in Wiley’s Pattern-
Oriented Software Architecture book series. He’s a member of the ACM. Contact him at Cur-
bralan Ltd., 17 Tyne Rd., Bishopston, Bristol, BS7 8EE, UK; kevlin@curbralan.com.

POSSIBLE TOPICS INCLUDE TECHNIQUES FOR
•Eliciting, quantifying, modeling, analyzing,

and specifying quality requirements
•Measuring to what degree a design

or product addresses these requirements
•Modeling and analyzing the value

of design alternatives
•Balancing, negotiating, prioritizing,

and resolving competing quality demands

We also welcome case studies evaluating the ROI
achieved by focusing on quality requirements. We’ll
give significant weight to articles about practical and
scalable techniques, tools, and methods.

Articles should not exceed 5,400 words, including all text, the ab-
stract, keywords, bibliography, author biographies, and table text.
Each table and figure counts as 200 words.

For author guidelines and submission details, contact the magazine at software@computer.org
or go to www.computer.org/software/author.htm. Specify that your submission is for the “Software Quality
Requirements” special issue. A detailed call is at www.computer.org/software/cfp.htm.

C A L L F O R A R T I C L E S

GUEST EDITORS:
•J. David Blaine, consultant,

jblaine@san.rr.com

•Jane Cleland-Huang, DePaul University,
jhuang@cs.depaul.edu

WWW.COMPUTER.ORG/SOFTWARE

How do you define quality in your software products?
How do you express the level of quality that stakehold-
ers might desire? How much time do you spend specify-
ing requirements for quality? During development, how
do you balance the competing demands of schedule,
cost, scope, and quality? To some extent, every software
development project must contend with these questions.
This special issue is about how software project deci-
sion-makers address these questions.

PUBLICATION: March/April 2008
SUBMISSION DEADLINE: 1 Sept. 2007

Software Quality Requirements
How to Balance Competing Priorities

Authorized licensed use limited to: Cal Poly State University. Downloaded on January 9, 2010 at 01:00 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

