Working Effectively with
Legacy Code

CALPOLY

-
What’s the book about?

e Software rots, get used to it — software entropy

e Techniques to understand code, get it under test,
refactor 1t, and add features

e Making legacy code better, even if not perfect
 What 1s legacy code?

— Code written by someone else
— Code we don’t understand or difficult to change

— Code not covered by tests

CALPOLY

J

Four Reasons to Change Software

* Adding a feature
* Fixing a bug
* Improving the design

e Optimizing resource usage

e Can you think of any others?

CALPOLY

]

Retactoring

e Software 1s more like gardening than construction

e Refactoring: changing the internal structure of
code without changing its external behavior

— Don’t try to refactor and add functionality at the same
fime

— Have good tests and run them often when refactoring

— Take short, deliberate steps

 Become familiar with automated refactoring tools

 See www.refactoring.com

CALPOLY

[
What Changes?

Adding a | Fixing a Bug | Refactoring | Optimizing
Feature

Structure Changes Changes Changes

New Functionality | Changes

Functionality Changes

Resource Usage Changes

CALPOLY

[
How Much Changes?

Existing Behavior

|

New Behavior

CALPOLY

]

What are the Implications?

e Make sure that the small number of things
that we change are changed correctly
* Preserve existing behavior

— 1.€. ensure that the vast majority of the behavior
doesn’t change

CALPOLY

]

How do we do this?

e Minimize number of changes?

— May result 1in poor choices (broken windows)

e E.g. add a little to a method, even though it makes the
method more complex than it needs to be
— “the move from figuring things out to making
changes feels like jumping off a cliff to avoid a
tiger. You hesitate and hesitate. ‘Am I ready to
do 1t? Well, I guess I have to.””

e EX. Sprint consultants convincing each other to deploy

CALPOLY

I
Chapter 2

e Edit and Pray?
— Study the code
— Make the change

— Do some testing to see if the new functionality
works and 1f we broke anything

e How do we know? There 1s a lot to test

e Cover and Modity — the best option

CALPOLY

]

Software Vise

e Tests that detect change serve as a software
Vise.

]

Large vs. Small Tests

* Problems with large tests
— Error localization
— Execution time
— Coverage (hard to cover just new code)

e Qualities of good unit tests

— They run fast
e If it takes 1/10% of a second, it is too slow
e Don’t talk to db, over network, files, configuration

— They help us localize problems

CALPOLY

I
Cover and Modity

e Legacy Code Change Algorithm
— Identify change points
— Find test points
— Break dependencies
— Write tests

— Make changes and refactor

CALPOLY

J
Ch.3

 Two reasons to break dependencies
— Sensing: accessing values our code computes

— Separation: getting our code 1n a test harness

CALPOLY

-
Fakes vs. Mocks

e Fakes are simpler objects that stand in for
the real thing

e Mocks are more advanced fakes that can
include assertions (e.g. what the object
should be given and what 1t should return)

CALPOLY

-
Ch. 4: Seams

e A seam 1s a place where you can alter
behavior 1n your program without editing in
that place.

— Preprocessing seams (e.g. #ifdef)
— Link seams (e.g. change classpath)

— Object seams (e.g. override method)

CALPOLY

