
Working Effectively with

Legacy Code

What’s the book about?

• Software rots, get used to it – software entropy

• Techniques to understand code, get it under test,

refactor it, and add features

• Making legacy code better, even if not perfect

• What is legacy code?

– Code written by someone else

– Code we don’t understand or difficult to change

– Code not covered by tests

Four Reasons to Change Software

• Adding a feature

• Fixing a bug

• Improving the design

• Optimizing resource usage

• Can you think of any others?

Refactoring

• Software is more like gardening than construction

• Refactoring: changing the internal structure of

code without changing its external behavior

– Don’t try to refactor and add functionality at the same

time

– Have good tests and run them often when refactoring

– Take short, deliberate steps

• Become familiar with automated refactoring tools

• See www.refactoring.com

What Changes?

ChangesResource Usage

ChangesFunctionality

ChangesNew Functionality

ChangesChangesChangesStructure

OptimizingRefactoringFixing a BugAdding a

Feature

How Much Changes?

Existing Behavior

New Behavior

What are the Implications?

• Make sure that the small number of things

that we change are changed correctly

• Preserve existing behavior

– i.e. ensure that the vast majority of the behavior

doesn’t change

How do we do this?

• Minimize number of changes?

– May result in poor choices (broken windows)

• E.g. add a little to a method, even though it makes the

method more complex than it needs to be

– “the move from figuring things out to making

changes feels like jumping off a cliff to avoid a

tiger. You hesitate and hesitate. ‘Am I ready to

do it? Well, I guess I have to.’”

• Ex. Sprint consultants convincing each other to deploy

Chapter 2

• Edit and Pray?

– Study the code

– Make the change

– Do some testing to see if the new functionality

works and if we broke anything

• How do we know? There is a lot to test

• Cover and Modify – the best option

Software Vise

• Tests that detect change serve as a software

vise.

Large vs. Small Tests

• Problems with large tests

– Error localization

– Execution time

– Coverage (hard to cover just new code)

• Qualities of good unit tests

– They run fast

• If it takes 1/10th of a second, it is too slow

• Don’t talk to db, over network, files, configuration

– They help us localize problems

Cover and Modify

• Legacy Code Change Algorithm

– Identify change points

– Find test points

– Break dependencies

– Write tests

– Make changes and refactor

Ch.3

• Two reasons to break dependencies

– Sensing: accessing values our code computes

– Separation: getting our code in a test harness

Fakes vs. Mocks

• Fakes are simpler objects that stand in for

the real thing

• Mocks are more advanced fakes that can

include assertions (e.g. what the object

should be given and what it should return)

Ch. 4: Seams

• A seam is a place where you can alter

behavior in your program without editing in

that place.

– Preprocessing seams (e.g. #ifdef)

– Link seams (e.g. change classpath)

– Object seams (e.g. override method)

