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ABSTRACT

The FreeBsD, GNU/Linux, Solaris, and Windows operating
systems have kernels that provide comparable facilities. In-
terestingly, their code bases share almost no common parts,
while their development processes vary dramatically. We
analyze the source code of the four systems by collecting
metrics in the areas of file organization, code structure, code
style, the use of the C preprocessor, and data organization.
The aggregate results indicate that across various areas and
many different metrics, four systems developed using wildly
different processes score comparably. This allows us to posit
that the structure and internal quality attributes of a work-
ing, non-trivial software artifact will represent first and fore-
most the engineering requirements of its construction, with
the influence of process being marginal, if any.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management—Software pro-

cess models; D.2.8 [Software Engineering]: Metrics— Prod-
uct metrics

General Terms

Measurement

1. INTRODUCTION

Arguments regarding the efficacy of open source products
and development processes often employ external quality at-
tributes [21], anecdotal evidence [17], or even plain hand
waving [13]. Although considerable research has been per-
formed on open source artifacts and processes [10, 36, 7,
9, 41, 3, 32|, the direct comparison of open source prod-
ucts with corresponding proprietary systems has remained
an elusive goal. The recent open-sourcing of the Solaris ker-
nel and the distribution of large parts of the Windows kernel
source code to research institutions has provided us with a
window of opportunity to perform a comparative evaluation
between the code of open source and proprietary systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE’08, May 10-18, 2008, Leipzig, Germany.

Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

381

Here I report on code quality metrics I collected from four
large industrial-scale operating systems: FreeBsD, Linux,
OpenSolaris, and the Windows Research Kernel (WRK). The
main contribution of this research is the finding that there
are no significant across-the-board code quality differences
between four large working systems, which have been devel-
oped using various open-source and proprietary processes.
An additional contribution involves the proposal of numer-
ous code quality metrics for objectively evaluating software
written in C. Although these metrics have not been empiri-
cally validated, they are based on generally accepted coding
guidelines, and therefore represent the rough consensus of
developers concerning desirable code attributes.

2. MATERIALS AND TOOLS

The key properties of the systems I examine appear in
Table 1(A), while Figure 1 shows their history and geneal-
ogy. All four systems started their independent life in 1991—
1993. Two of the systems, FreeBsD and OpenSolaris, share
common ancestry that goes back to the 1978 1BSD version
of Unix. FreeBsD is based on BSD/Net2: a distribution of
the Berkeley Unix source code that was purged from propri-
etary AT&T code. The code behind OpenSolaris goes further
back, tracing the origins of its code back to the 1973 version
of Unix, which was the first written in C [29, p. 54]. In
2005 Sun released most of the Solaris source code under an
open-source license.

Linux was developed from scratch in an effort to build a
more feature-rich version of Tanenbaum’s teaching-oriented,
POSIX-compatible Minix operating system [39]. Thus, al-
though Linux borrowed ideas from both Minix and Unix, it
did not derive from their code [40].

The intellectual roots of Windows NT go back to DEC’s VMS
through the common involvement of the lead engineer David
Cutler in both projects. Windows NT was developed as Mi-
crosoft’s answer to Unix, initially as an alternative of IBM’s
0s/2, and later as a replacement of the 16-bit Windows code
base. The Windows Research Kernel (WRK) whose code I
examine in this paper includes major portions of the 64-bit
Windows kernel, which Microsoft distributes for research use
[27]. The kernel is written in C with some small extensions.
Excluded from the kernel code are the device drivers, and
the plug-and-play, power management, and virtual DOS sub-
systems. The missing parts explain the large size difference
between the WRK and the other three kernels.

Although all four systems I examine are available in source
code form, their development methodologies are markedly
different. OpenSolaris and WRK have been developed as pro-
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Figure 1: History of the examined systems.
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prietary systems. (OpenSolaris has a very short life as an
open-source project, and therefore only minimal code could
have been contributed by developers outside Sun in the snap-
shot I examined.) Furthermore, Solaris has been developed
with emphasis on a formal process [6], while the develop-
ment of Windows NT employed more lightweight methods
[5, pp. 223, 263, 273-274]. FreeBsD and Linux are both
developed using open source development methods [8], but
their development processes are also dissimilar. FreeBsD is
mainly developed by a non-hierarchical group of about 220
committers who have access to a shared cvs-based software
repository. In contrast, Linux’s developers are organized in
a four tier pyramid. At the bottom two levels thousands of
developers contribute patches to about 560 subsystem main-
tainers. At the top of the pyramid Linus Torvalds, assisted
by a group of trusted lieutenants, is the sole person respon-
sible for adding the patches to the Linux tree [28].

Most of the metrics reported here were calculated by is-
suing SQL queries on a relational database containing the
code elements comprising each system (identifiers, tokens,
functions, files, comments, and their relationships).l The
database for each system was constructed by running the
CScout refactoring browser [33, 34] on the specified con-
figurations of the corresponding operating system. (Each
configuration comprises different macro definitions, and will
therefore process code in a different way.) To process the
source code of a complete system CScout must be given a
configuration file that will specify the precise environment
used for processing each compilation unit. For the FreeBsD
and the Linux kernels I constructed this configuration file
by instrumenting proxies for the GNU C compiler, the linker
and some shell commands. These recorded their arguments
in a format that could then be used to construct a CScout
configuration file. For OpenSolaris and the WRK I simply
performed a full build for the investigated configurations,
and then processed the compilation and linking commands
appearing in the build’s log.

In order to limit bias introduced in the selection of met-
rics, I chose and defined the metrics I would collect before
setting up the mechanisms to measure them. This helped
me avoid the biased selection of metrics based on results I
obtained along the way. However, this ex ante selection also
resulted in many metrics—like the number of characters per
line—that did not supply any interesting information, fail-
ing to provide a clear winner or loser. On the other hand
my selection of metrics was not completely blind, because
at the time I designed the experiment I was already famil-
iar with the source code of the FreeBsD kernel and had seen
source code from Linux, the 9th Research Edition Unix, and
Windows device drivers.

Other methodological limitations of this study are the
small number of (admittedly large and important) systems
studied, the language specificity of the employed metrics,
and the coverage of only maintainability and portability
from the space of all software quality attributes. This last
limitation means that the study fails to take into account
the large and important set of quality attributes that are
typically determined at runtime: functionality, reliability,
usability, and efficiency. However, these missing attributes
are affected by configuration, tuning, and workload selec-

!The databases (141 million records), their schema, and the
corresponding queries are available online at http://www.
dmst.aueb.gr/dds/sw/4kernel/.
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Figure 2: File length (in lines) of C files and headers.

tion. Studying them would introduce additional subjective
criteria. The controversy surrounding studies comparing
competing operating systems in areas like security or per-
formance demonstrates the difficulty of such approaches.

The large size difference between the WRK source code
and the other systems, is not as problematic as it may ini-
tially appear. An earlier study on the distribution of the
maintainability index [4] across various FreeBsD modules [35,
Figure 7.3] showed that their maintainability was evenly dis-
tributed, with few outliers at each end. This makes me be-
lieve that the WRK code examined can be treated as a repre-
sentative subset of the complete Windows operating system
kernel.

3. METHODS AND RESULTS

The metrics I collected can be roughly categorized into the
areas of file organization, code structure, code style, prepro-
cessing, and data organization.

3.1 File Organization

In the C programming language source code files play a
significant role in structuring a system. A file forms a scope
boundary, while the directory it is located may determine
the search path for included header files [15, p. 45]. Thus,
the appropriate organization of definitions and declarations
into files, and files into directories is a measure of the sys-
tem’s modularity [25].

Figure 2 shows the length of C and header files.? Most
files are less than 2000 lines long. Overly long files are often
problematic, because they can be difficult to manage, they
may create many dependencies, and they may violate mod-
ularity. Indeed the longest header file (WRK’s winerror.h) at
27,000 lines lumps together error messages from 30 different
areas; most of which are not related to the Windows kernel.

A related measure examines the contents of files, not in
terms of lines, but in terms of defined entities. In a C source

2Each candlestick in the figures depicts the minimum, lower
(25%) quartile, median, upper (75%) quartile, and maxi-
mum values. The diamond indicates the mean. When two
candlesticks are shown for each system, the caption’s first
element (C files in this case) is shown on the left, and the
second (header files here) on the right. Minima and maxima
lying outside the graph’s range are indicated with a dashed
line.
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Figure 3: Defined global functions and structures.

file the main entity is a global function, while for header files,
an important entity is a structure; the closest abstraction to
a class that is available in C. Figure 3 shows the number
of global functions that are declared in each C file and the
number of aggregates (structures or unions) that are defined
in each header file. Ideally, both numbers should be small,
indicating an appropriate separation of concerns.

At a higher level of granularity, I examine the number
of files located in a single directory. Again here, putting
many files in a directory is like having many elements in
a module. A large number of files can confuse developers,
who often search through these files as a group with tools
like grep, and lead to accidental identifier collisions through
shared header files. The numbers I found in the examined
systems can be seen in Table 1(B).

The next line in the table describes the correspondence
between header files and C (proper) files. A common style
guideline for C code involves putting each module’s interface
in a separate header file, and its implementation in a cor-
responding C file. Thus a ratio of header to C files around
1 is the optimum; numbers significantly diverging from this
figure may indicate an unclear distinction between interface
and implementation. This can be acceptable for a small sys-
tem (the ratio in the implementation of the awk program-
ming language is 3/11), but will be a problem in a system
consisting of thousands of files.

Finally, the last line in Table 1(B) provides a metric re-
lated to the relationships between files when these are re-
garded as first-class entities. I define a file’s fan-out as the
number of efferent references it makes to elements declared
or defined in other files. For instance, a C file including
the headers stdio.h and stdlib.h that uses the symbols FILE,
pute, and malloc will have a fan-out of 3. Correspondingly,
I define as a file’s fan-in the number of afferent references
coming in from other files. Thus, in the previous example,
the fan-in of stdio.h would be 2. I used Henry and Kafura’s
information flow metric [16] to look at the corresponding
relationships between files. The value I report is

(fanIn x fanOut)?

A large value of this metric has been associated with the
occurrence of changes and structural flaws.

Authorized licensed use limited to: Cal Poly State University. Downloaded on May 2, 2009 at 16:28 from IEEE Xplore. Restrictions apply.



Metric FreeBsD Linux Solaris WRK
A. Overview
Version HEAD 2006-09-18 2.6.18.8-0.5 2007-08-28 1.2
Configuration i386 AMD64 AMD64  Sundv Sundu 1386 AMDG4
SPARCG64 SPARC
Lines (thousands) 2,599 4,150 3,000 829
Comments (thousands) 232 377 299 190
Statements (thousands) 948 1,772 1,042 192
Source files 4,479 8,372 3,851 653
Linked modules 1,224 1,563 561 3
C functions 38,371 86,245 39,966 4,820
Macro definitions 727,410 703,940 136,953 31,908
B. File Organization
Files per directory AN 6.8 20.4 8.9 15.9
Header files per C source file ~1 1.05 1.96 1.09 1.92
Average structure complexity in files . 2.2 x 10" 1.3 x 103 5.4 x 10" 2.6 x 10"
C. Code Structure
% global functions \ 36.7 21.2 45.9 99.8
% strictly structured functions S 27.1 68.4 65.8 72.1
% labeled statements AN 0.64 0.93 0.44 0.28
Average number of parameters to functions N 2.08 1.97 2.20 2.13
Average depth of maximum nesting AN 0.86 0.88 1.06 1.16
Tokens per statement AN 9.14 9.07 9.19 8.44
% of tokens in replicated code N 4.68 4.60 3.00 3.81
Average structure complexity in functions . 7.1 x 10* 1.3 x 108 3.0 x 10° 6.6 x 10°
D. Code Style
% style conforming lines / 7727 77.96 84.32 33.30
% style conforming typedef identifiers e 57.1 59.2 86.9 100.0
% style conforming aggregate tags e 0.0 0.0 20.7 98.2
Characters per line N 30.8 29.4 27.2 28.6
% of numeric constants in operands AN 10.6 13.3 7.7 7.7
% unsafe function-like macros AN 3.99 4.44 9.79 4.04
% misspelled comment, words AN 33.0 31.5 46.4 10.1
% unique misspelled comment words N 6.33 6.16 5.76 3.23
E. Preprocessing
% of preprocessor directives in header files AN 224 21.9 21.6 10.8
% of non-#include directives in C files AN 2.2 1.9 1.2 1.7
% of preprocessor directives in functions AN 1.56 0.85 0.75 1.07
% of preprocessor conditionals in functions N 0.68 0.38 0.34 0.48
% of function-like macros in defined functions 26 20 25 64
% of macros in unique identifiers AN 66 50 24 25
% of macros in identifiers AN 32.5 26.7 22.0 27.1
F. Data Organization
% of variable declarations with global scope N 0.36 0.19 1.02 1.86
% of variable operands with global scope AN 3.3 0.5 1.3 2.3
% of identifiers with wrongly global scope AN 0.28 0.17 1.51 3.53
% of variable declarations with file scope AN 2.4 4.0 4.5 6.4
% of variable operands with file scope AN 10.0 6.1 12.7 16.7
Variables per typedef or aggregate N 15.13 25.90 15.49 7.70
Data elements per aggregate or enumeration N 8.5 10.0 8.6 7.3

Metric interpretation: \, means lower is better; / means higher is better.

Table 1: Key scalar metrics

3.2 Code Structure

The code structure of the four systems illustrates how
similar problems can be tackled through different control
structures and separation of concerns. It also allows us to
peer into the design of each system.

Figure 4 shows the distribution across functions of the
extended cyclomatic complexity metric [23]. This is a mea-

384

sure of the number of independent paths that are contained
in each function. The number shown takes into account the
Boolean and conditional evaluation operators (because these
introduce additional paths), but not the multi-way switch
statements, because these would disproportionably affect
the result for code that is typically cookie-cutter similar.
The metric was designed to measure a program’s testability,

Authorized licensed use limited to: Cal Poly State University. Downloaded on May 2, 2009 at 16:28 from IEEE Xplore. Restrictions apply.



Qo2 e 2 e iz xS
£33 Ty 88 2,8
6l oa : 4> o © l 1 20
- ‘ .
{15
5L b *
i 110
4l * L
1458
3,
T — 10
21 M ] ] ] 15
1 -10
FreeBSD Linux Solaris Windows

Figure 4: Extended cyclomatic complexity and num-
ber of statements per function.
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Figure 5: Halstead complexity.

understandability, and maintainability [12]. The same figure
also shows the number of statements per function. Ideally,
this should be a small number (e.g. around 20) allowing the
complete body a function to fit on the developer’s screen.

In Figure 5 we can see the distribution of the (often criti-
cized) Halstead volume complexity [14]. Ideally, this should
be low, reflecting code that doesn’t require a lot of mental
effort to comprehend.

Taking a step back to look at interactions between func-
tions, Figure 6 depicts common coupling in functions by
showing the percentage of the unique identifiers appearing
in a function’s body that come either from the scope of the
compilation unit (static) or from the project scope (global).
Both forms of coupling are undesirable, with the coupling
through global identifiers being worse than that occurring
through file-scoped ones.

Other metrics associated with code structure appear in
Table 1(C). The percentage of global functions indicates
the functions visible throughout the system. The number
of such functions in the WRK (nearly 100%; also verified by
hand) is shockingly high. It may however reflect Microsoft’s
use of different techniques—such as linking into shared li-
braries with explicitly exported symbols—for avoiding iden-
tifier clashes.
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Figure 6: Common coupling at file and global scope.

Strictly structured functions are those following the rules
of structured programming: a single point of exit and no goto
statements. Such functions may be easier to reason about.
Along the same lines, the percentage of labeled statements
indicates goto targets: an severe violation of structured pro-
gramming principles. I measured labeled statements rather
than goto statements, because many branch targets are a
lot more confusing than many branch sources. Often multi-
ple goto statements to a single label are used to exit from a
function while performing some cleanup—the equivalent of
an exception’s finally clause.

The number of arguments to a function is an indicator
of the interface’s quality: when many arguments must be
passed, packaging them into a single structure reduces clut-
ter and opens up style and performance optimization oppor-
tunities.

Two metrics tracking the code’s understandability are the
average depth of maximum nesting and the number of to-
kens per statement. Both deeply nested structures and long
statements are difficult to comprehend [2].

Replicated code has been associated with bugs [22] and
maintainability problems [35, pp. 413-416]. The corre-
sponding metric (% of tokens in replicated code) shows the
percentage of the code’s tokens that participate in at least
one clone set, as identified by the tool CCFinderX.?

Finally, the average structure complexity in functions uses
again Henry and Kafura’s information flow metric [16] to
look at the relationships between functions. Ideally we would
want this number to be low, indicating an appropriate sep-
aration between suppliers and consumers of functionality.

3.3 Code Style

The same code can be written using various choices of
indentation, spacing, identifier names, representations for
constants, and naming conventions [20, 11, 1, 37]. In most
cases consistency is more important than the actual choice.

I measured each system’s consistency of style by applying
the formatting program indent* on the complete source code
of each system, and counting the lines that indent modified.
The result appears on the first line of Table 1(D). The be-
havior of indent can be modified using various options in or-

3http://www.ccfinder.net/
‘http://www.gnu.org/software/indent/

Authorized licensed use limited to: Cal Poly State University. Downloaded on May 2, 2009 at 16:28 from IEEE Xplore. Restrictions apply.



30

9
924
14
€L
€S
0S
78
89

25 | 1
20 | ]

15 |

*
L

10 |

!

0

FreeBSD
Figure 7: Length of global and aggregate identifiers.

Linux Solaris Windows

der to match corresponding formatting styles. For instance,
one can specify the amount of indentation and the placement
of braces. In order to determine each system’s formatting
style and use the appropriate formatting options, I first run
indent on each system with various values of the 15 numer-
ical flags, and turning on or off each one of the 55 Boolean
flags. I then chose the set of flags that produced the largest
number of conforming lines. For example, on the OpenSo-
laris source code indent with its default flags would reformat
74% of the lines. This number shrank to 16% once the ap-
propriate flags were determined (-i8 -bli0 -cbi0 -ci4 -ip0 -bad
-bbb -br -brs -ce -nbbo -ncs -nlp -npcs).

Figure 7 depicts the length distribution of two important
classes of C identifiers: those of globally visible objects (vari-
ables and functions) and the tags used for identifying aggre-
gates (structures and unions). With a single name space
typically used for each class throughout the system, it is im-
portant to choose names that distinct and recognizable (see
chapter 31 of reference [24]). For these classes of identifiers
longer names are preferable.

Further metrics related to code style appear in Table 1(D).
Two related consistency measurements I performed involved
manually determining the convention used for naming type-
defs and aggregate tags, and then counting the identifiers of
those classes that did not match the convention.

Three other metrics aimed at identifying programming
practices that style guidelines typically discourage: overly
long lines of code (characters per line metric), the direct use
of “magic” numbers in the code (% of numeric constants in
operands), and the definition of function-like macros that
can misbehave when placed after an if statement (% unsafe
function-like macros).’

Another important element of style involves commenting.
It is difficult to judge objectively the quality of code com-
ments. Comments can be superfluous or even wrong. Yet,
we can easily measure the comment density. In Figure 8
we see the comment density in C files as the ratio of com-
ment characters to statements. In header files I measured
it as the ratio of defined elements that typically require an
explanatory comment (enumerations, aggregates and their

5Function-like macros containing more than one statement
should have their body enclosed in a dummy do ... while(0)
block in order to make them behave like a call to a real
function.
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Figure 8: Comment density in C and header files.

members, variable declarations, and function-like macros)
to the number of comments.

I also measured the number of spelling errors in the com-
ments as a proxy for their quality. For this I applied on the
text of the comments the aspell spelling checker with a cus-
tom dictionary consisting of all the system’s identifier and
file names. The low number of errors in the WRK reflects the
fact that, according to accompanying documentation, these
were explicitly spell-checked before the code was released.

Although I did not measure portability objectively, the
work involved in processing the source code with CScout
allowed me to get a feeling of the portability of each sys-
tem’s source code between different compilers. The code of
Linux and WRK appears to be the one most tightly bound
to a specific compiler. Linux uses numerous language exten-
sions provided by the GNU C compiler; in some places having
assembly code thinly disguised in what gcc passes as C syn-
tax. The WRK uses considerably fewer language extensions,
but relies significantly on the ¢ry catch extension to C that
the Microsoft compiler supports. The FreeBSD kernel uses
only a few gcc extensions, and these are often isolated inside
wrapping macros. The OpenSolaris kernel was a welcomed
surprise: it was the only body of source code that did not
require any extensions to CScout in order to compile.

3.4 Preprocessing

The relationship between the C language proper and its
(integral) preprocessor can at best be described as uneasy.
Although C and real-life programs rely significantly on the
preprocessor, its features often create portability, maintain-
ability, and reliability problems. The preprocessor, as a
powerful but blunt instrument, wrecks havoc with identi-
fier scopes, the ability to parse and refactor unpreprocessed
code, and the way code is compiled on different platforms.
For this reason, modern languages based on C have tried to
replace features provided by the C preprocessor with more
disciplined alternatives, while programming guidelines rec-
ommend moderation in the use of preprocessor constructs.

A global measure on the use of preprocessor features is
the amount of expansion that occurs when processing code.
Figure 9 contains two such measures: one for the body of
functions (representing expansion of code), and one for ele-
ments outside the body of functions (representing data defi-
nitions and declarations). Both measurements were made by

Authorized licensed use limited to: Cal Poly State University. Downloaded on May 2, 2009 at 16:28 from IEEE Xplore. Restrictions apply.
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Figure 9: Preprocessing expansion in functions and
files.

calculating the ratio of tokens arriving into the preprocessor
to those coming out of it.

Four further metrics listed in Table 1(E) measure increas-
ingly unsafe uses of the preprocessor: directives in header
files (often required), non-#include directives in C files (rarely

needed), preprocessor directives in functions (of dubious value),

and preprocessor conditionals in functions (a portability risk).

Preprocessor macros are typically used instead of variables
(object-like macros) and functions (function-like macros). In
modern C object-like macros can often be replaced through
enumeration members and function-like macros through in-
line functions. Both alternatives adhere to the scoping rules
of C blocks and are therefore considerably safer than macros
whose scope typically spans a whole compilation unit. The
last three metrics of preprocessor use in Table 1(E) mea-
sure the occurrence of function and object-like macros in
the code. Given the availability of viable alternatives and
the dangers associated with macros, ideally all should have
low values.

3.5 Data Organization

The final set of measurements concerns the organization
of each kernel’s (in-memory) data. A measure of the quality
of this organization in C code can be determined by the
scoping of identifiers and the use of structures.

In contrast to many modern languages there is a paucity of
mechanisms in C for controlling namespace pollution. Func-
tions can only be defined in only two possible scopes (file
and global), macros are visible throughout the compilation
unit in which they are defined, and aggregate tags live all in
the same (block scoped) namespace. Judiciously using the
few mechanisms available to control the number of possibly
interfering identifiers is an important requirement for the
maintainability of large-scale systems, like the ones I exam-
ine. Figure 10 shows the level of namespace pollution in C
files by averaging the number of identifiers and macros that
are visible at the start of each function. With roughly 10,000
identifiers visible on average at any given point across the
systems I examine, it is obvious that namespace pollution is
a problem in C code, and that developers should try to keep
this number low.

The first three measures in Table 1(F) examine how each
system deals with the most scarce resource, that of global
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variable identifiers. One would like to minimize the number
of variable declarations that take place at the global scope
in order to minimize namespace pollution. Furthermore,
minimizing the percentage of operands that refer to global
variables reduces coupling and lessens the cognitive load on
the reader of the code (global identifiers can be declared
anywhere in the millions of lines comprising the system).
The last metric concerning global objects counts identifiers
that are declared as global, but could have been declared
with a static scope, because they are only accessed from a
single file. The next two metrics look at variable declarations
and operands with file scope. These are more benign than
global variables, but still worse than variables scoped at a
block level.

The last two metrics concerning the organization of data
provide a crude measure of the abstraction mechanisms used
in the code. Type and aggregate definitions are the two
main data abstraction mechanisms available to C programs.
Thus, counting the number of variable declarations corre-
sponding to each type or aggregate definition provides an
indication of the extent that these abstraction mechanisms
have been employed in the code. The number of data ele-
ments per aggregate or enumeration is to data elements what
Chidamber and Kemerer’'s WMC object-oriented weighted
methods per class (WMC) metric is to code. A high value
could indicate that a structure tries to store too many dis-
parate elements.

4. RELATED WORK

Considerable work has been performed in the area of open
source software evaluation; see the pointers listed in the In-
troduction and the references therein. Studies of operating
system code quality attributes have been conducted for more
than two decades [16, 43]. Particularly close to our work are
comparative studies of open source operating systems [42,
19], and studies comparing open and closed source systems
[26, 38, 30].

A comparison of maintainability attributes between the
Linux and various BSD operating systems found that Linux
contained more instances of common coupling than the BSD
variants. Our results corroborate this finding for file-scoped
identifiers, but not for global identifiers (see Figure 6). An
evaluation of growth dynamics of the FreeBSD and Linux
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Metric FreeBsD Linux Solaris WRK

File Organization

Length of C files - -
Length of header files + -
Defined global functions in C files - -
Defined structures in header files -
Files per directory -

Header files per C source file

Average structure complexity in files - +

Code Structure

Extended cyclomatic complexity

Statements per function

Halstead complexity

Common coupling at file scope

Common coupling at global scope

% global functions

% strictly structured functions -
% labeled statements

Average number of parameters to functions

Average depth of maximum nesting - -
Tokens per statement

% of tokens in replicated code - - +
Average structure complexity in functions + -

4+ ++

++

Code Style

Length of global identifiers

Length of aggregate identifiers

% style conforming lines

% style conforming typedef identifiers - -
% style conforming aggregate tags - - -
Characters per line

% of numeric constants in operands - +
% unsafe function-like macros -
Comment density in C files -
Comment density in header files -

% misspelled comment words

% unique misspelled comment words

+
I+ +

++++ + e+

Preprocessing

Preprocessing expansion in functions -
Preprocessing expansion in files

% of preprocessor directives in header files - -
% of non-#include directives in C files -

% of preprocessor directives in functions -

% of preprocessor conditionals in functions - +
% of function-like macros in defined functions +
% of macros in unique identifiers —

% of macros in identifiers -

_l’_
++

++ o+

Data Organization

Average level of namespace pollution in C files + —
% of variable declarations with global scope

% of variable operands with global scope -
% of identifiers with wrongly global scope

% of variable declarations with file scope +
% of variable operands with file scope

Variables per typedef or aggregate

Data elements per aggregate or enumeration - +

L+ ++

Table 2: Result summary
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operating systems found that both grow at a linear rate,
and that claims of open source systems growing at a faster
rate than commercial systems are unfounded [19].

The study by Paulson and his colleagues [26] compares
evolutionary patterns between three open source projects
(Linux, ¢co, and Apache) and three non-disclosed commer-
cial ones, finding a faster rate of bug fixing and feature addi-
tion in the open source projects. In another study focusing
on internal quality attributes [38] the authors used a com-
mercial tool to evaluate 100 open source applications using
metrics similar to those reported here, but measured on a
scale ranging from accept to rewrite. They then compared
the results against benchmarks supplied by the tool’s ven-
dor for commercial projects. Their results were inconclu-
sive, with the modules roughly split in half between accept
and rewrite. A related study by the same group [30] exam-
ined the evolution of the maintainability index [4] between
an open source application and its (semi)proprietary forks.
They concluded that all projects suffered from a similar de-
terioration of the maintainability index over time.

S.  SUMMARY AND DISCUSSION

The study has a number of limitations A summary of the
results I obtained appears in Table 2. In the table I have
marked cells where an operating system excels with a + and
corresponding laggards with a —. For a number of reasons it
would be a mistake to read too much from this table. First
of all, the weights of the table’s metrics are not calibrated ac-
cording to their importance. In addition, it is far from clear
that the metrics I used are functionally independent, and
that they provide a complete or even representative picture
of the quality of C code. Finally, I entered the +/— markings
subjectively, trying to identify clear cases of differentiation
in particular metrics.

Nevertheless, by looking at the distribution and cluster-
ing of markings we can arrive at some important plausible
conclusions. The most interesting result from both the de-
tailed results listed in the previous sections and the sum-
mary in Table 2 is the similarity of the values among the
systems. Across various areas and many different metrics,
four systems developed using wildly different processes score
comparably. At the very least, the results indicate that the
structure and internal quality attributes of a working, non-
trivial software artifact will represent first and foremost the
engineering requirements of its construction, with the influ-
ence of process being marginal, if any. This does not mean
that process is irrelevant, but that processes compatible with
an artifact’s requirements lead to roughly similar results. In
the field of architecture this phenomenon has been popular-
ized under the motto “form follows function” [31].

One can also draw interesting conclusions from the clus-
tering of marks in particular areas. Linux excels in various
code structure metrics, but lags in code style. This could
be attributed to the work of brilliant motivated program-
mers who aren’t however efficiently managed to pay atten-
tion to the details of style. In contrast, the high marks of
WRK in code style and low marks in code structure could be
attributed to the opposite effect: programmers who are effi-
ciently micro-managed to care about the details of style, but
are not given sufficient creative freedom to structure their
code in an appropriate manner.

The high marks of Solaris and WRK in preprocessing could
also be attributed to programming discipline. The problems

from the use of the preprocessor are well-known, but its al-
lure is seductive. It is often tempting to use the preprocessor
in order to create elaborate domain-specific programming
constructs. It is also often easy to fix a portability problem
by means of conditional compilation directives. However,
both approaches can be problematic in the long run, and
we can hypothesize that in an organization like Sun or Mi-
crosoft programmers are discouraged from relying on the
preprocessor.

A final interesting cluster appears in the low marks for
preprocessor use in the FreeBsD kernel. This could be at-
tributed to the age of the code base in conjunction with
a gung-ho programming attitude. However, a particularly
low level of namespace pollution across the FreeBsSD source
code could be a result of using the preprocessor to setup and
access conservatively scoped data structures.

Despite various claims regarding the efficacy of particular
open or close-source development methods, we can see from
the table that there is no clear winner (or loser). The two
systems with a commercial pedigree (Solaris and WRK) have
slightly more positive than negative marks. However, WRK
also has the largest number of negative marks, while Solaris
has the second lowest number of positive marks. Therefore,
the most we can read from the overall balance of marks is
that open source development approaches do not produce
software of markedly higher quality than proprietary soft-
ware development.
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