
 1

S O R T I N G

Sorting is interpreted as arranging data in some particular order. In this handout we discuss

different sorting techniques for a list of elements implemented as an array.

In all algorithms of this handout the sorting of elements is in ascending order (to sort in

descending order you just need to change < and <= operations, when comparing elements, with >

and >= correspondingly).

In all algorithms of this handout the indexing is consistent with Java which means that a list

of N elements is saved in list[0..N-1] array segment (i.e. the list occupies array cells 0,1,…,N-1).

Attention: In all presented algorithms the only two operations that are performed on data are

assignment and comparison. Therefore they are known as comparison-based algorithms. When

analyzing this type of algorithms, for the abstract measure of running time it is customary to take

the number of element-comparisons.

For simplicity, all algorithms are implemented for a list of int values. Everywhere in this

handout we assume the following definitions:

final int MAX_LENGTH = someInteger; // Maximum possible length of the list

int[] list = new int [MAX_LENGTH] ; //Definition of the list (allocate memory)

int N; // number of elements in the list (not array)

Attention: N and list.length are two different things. The variable N is the length of the list (i.e.

the number of elements in the list) which changes with every added/deleted element, while

list.length is the size of the array – a constant value that is set at the creation of the array.

1. Selection Sort Algorithm

To sort a list of N elements, this algorithm makes N-1 passes through the list, rearranging

elements as follows: the smallest element is found and put into the 1-st position (index 0), then

the 2-nd smallest is found and put into the 2-nd position, then the 3-rd smallest is found and put

into the 3-rd position, etc.

Note: “an element is put into i-th position” means it is swapped with the element at i-th position.

Here is a description of the work of the selection sort algorithm:

 FOR every i starting with first and ending with pre-last position of the list

 Find the minimum value in list[i .. N-1] and save its index in minIndex

 Swap the two elements at minIndex and i positions

The running time of this routine is Θ(N2).

Example:

The original list 7 4 2 3 10 9 1 8

After 1-st iteration of for-loop 1 4 2 3 10 9 7 8

After 2-nd iteration of for-loop 1 2 4 3 10 9 7 8

After 3-rd iteration of for-loop 1 2 3 4 10 9 7 8

After 4-th iteration of for-loop 1 2 3 4 10 9 7 8

After 5-th iteration of for-loop 1 2 3 4 7 9 10 8

After 6-th iteration of for-loop 1 2 3 4 7 8 10 9

After 7-th iteration of for-loop 1 2 3 4 7 8 9 10

Notes: The oval shows the i-th position that should be considered (arranged) in the next iteration.

 The red highlights the two elements that were swapped at the end of the given iteration.

 2

2. Bubble Sort Algorithm

To sort a list of N elements, this algorithm makes passes through the list until it is perfectly

ordered. During each pass, every pair of neighboring elements is checked (i.e. elements at 1-st

and 2-nd positions, then elements of 2-nd and 3-rd positions, etc.) – if the two elements of the

pair are not sorted, they are swapped. If during a pass through the list even one pair is corrected,

another pass has to be made (the process stops if no corrections were made during the pass).

Here is a description of the work of the bubble sort algorithm:

SET flag UP //flag is a Boolean variable used to determine if the list needs another pass

WHILE flag is UP

 SET flag DOWN

 FOR every i starting from 1-st and ending with pre-last position of the list

Compare i-th element and its neighbor; if “bad” pair, swap elements and set flag up

Note: maximum number of passes (while-loop iterations) through the list is N.

The running time of this routine is Θ(N2).

Example:

The original list 7 4 2 8 1 10 9 6 flag↑

After 1-st iteration of while-loop* flag↓ 4 2 7 1 8 9 6 10 flag↑

After 2-nd iteration of while-loop flag↓ 2 4 1 7 8 6 9 10 flag↑

After 3-rd iteration of while-loop flag↓ 2 1 4 7 6 8 9 10 flag↑

After 4-th iteration of while-loop flag↓ 1 2 4 6 7 8 9 10 flag↑

After 5-th iteration of while-loop flag↓ 1 2 4 6 7 8 9 10 flag↓

*Clarification: To show the work during one pass, here is the detailed description of the first pass

through the list (the first while-iteration) – the red shows that elements were swapped,

while blue indicates no change.

The original list 7 4 2 8 1 10 9 6 flag↑

During 1-st iteration of while-loop flag↓ 4 7 2 8 1 10 9 6 flag↑

 4 2 7 8 1 10 9 6 flag↑

 4 2 7 8 1 10 9 6 flag↑

 4 2 7 1 8 10 9 6 flag↑

 4 2 7 1 8 10 9 6 flag↑

 4 2 7 1 8 9 10 6 flag↑

 4 2 7 1 8 9 6 10 flag↑

Attention: After the 1-st pass the max element is at the end (in its proper place), after 2-nd pass

the 2-nd largest element is in the 2-nd position from the end (in its proper place), etc.

IMPROVEMENT: the performance of bubble sort algorithm can be slightly improved if during

each n-th pass through the list we compare/check only the first N-n elements with their right

neighbor (i.e. the 1-st pass checks elements of the segment list[0..N-2], the 2-nd pass checks

elements of the segment list[0..N-3], the 3-rd pass checks elements of list[0..N-4], etc.).

Here is a description of the work of the improved bubble sort algorithm:

SET flag UP //flag is a Boolean variable used to determine if the list needs another pass

SET last to the last position // last is an index (set/point it to the last position in the list)

WHILE flag is UP

 SET flag DOWN

 FOR every i starting from 1-st and ending with pre-last position of the list

Compare i-th element and its neighbor; if “bad” pair, swap elements and set flag up

Decrease last by 1

 3

3. Mergesort Algorithm

Mergesort is one of the faster algorithms for sorting a list of elements implemented as an array.

The running time of this routine is Θ(NlogN).

The idea implemented in mergesort is simple: cut the list into half, sort the left and right halves

separately, and then merge the two sorted halves into one sorted list. The same strategy is used

for sorting each of the halves. We can see that mergesort is a recursive routine. The cutting of

the list into halves continues until there is only one element left in the portion of the list to be

sorted (the base case). Here is the description of the work of mergesort:

 IF the list contains more than one element

 Cut the list into half //This simply means get the midpoint of the list

 Mergesort the first half

 Mergesort the second half

 Merge the two sorted halves into one sorted list

Mergesort is a great example of “divide-and conquer” strategy according to which the problem

is split into roughly equal sub-problems (the “divide” part), then these sub-problems are solved

recursively and their solutions are patched together to obtain the solution of the whole problem

(the “conquer” part).

Since mergesort is a recursive algorithm, its Java-implementation will include two methods: one

is a public method that the client invokes to sort the given list, and the second is a private

method (a recursive method) that is there to do the “behind-the-scenes” work on list segments

(let’s call both methods mergeSort). Thus, its Java implementation will include this code:

 public static void mergeSort (int[] list, int N) { mergeSort(list, 0, N-1); }

 private static void mergeSort (int[] list, int first, int last) //this method sorts list[first..last] segment

 { if (first < last) //checking if there is more than one element in list[first..last] segment

 { int middle = (first + last)/2;

 mergeSort(list, first, middle);

 mergeSort(list, middle+1, last);

 mergeSortedHalves (list, first, middle, last); //supporting method for merging two halves

 } }

The mergeSortedHalves supporting method will be private and will have the following signature:

 private static void mergeSortedHalves (int[] arr, int left, int middle, int right)
 //Merges two sorted halves of the array segment arr[left..right]

 //Precondition: arr[left..middle] is sorted; arr[(middle+1)..right] is sorted

 //Postcondition: arr[left..right] is sorted.

Here is a description of the work of the mergeSortedHalves method:

 Create a temporary array temp of length right-left+1

 SET index1 to first cell of the 1-st half //it is used to scan through elements of the 1-st half

 SET index2 to first cell of the 2-nd half //it is used to scan through elements of the 2-nd half

 SET index to the first cell of temp array //it is used to move through cells in temp array

 WHILE there are elements in both halves

 Save the smaller of elements at index1 and index2 into the “first” available cell of temp

 Increment the appropriate index (the one that had the smaller value)

 Increment the index of temp to point to the next cell

 Copy all remaining elements of the un-finished half into the remaining cells of temp array

 Copy all elements from temp array back into arr[left..right]

Note: the drawback of mergesort is the necessity to use a temporary array.

 4

4. Quick Sort Algorithm

The last algorithm we’ll discuss for sorting a list implemented as an array is quicksort – another

good example of “divide-and conquer” strategy.

The average running time of this algorithm is Θ(NlogN). In its worst case it performs in Θ(N2)

time so it is technically an O(N2) algorithm, however it is still considered one of the fastest

algorithms in practice: with some effort the worst case is made exponentially unlikely, so this

algorithm can be practically classified as an O(NlogN) algorithm based on its average case.

For clarity of explanations, let’s assume for now that elements in the list are distinct; it will

be noted later that everything works exactly the same way if duplicates are present.

The idea implemented in the quicksort is the following: select some value in the list to be the

split value (usually called pivot), split the list into two sub-lists so that the first one contains all

elements smaller than the pivot, and the second one contains all elements greater than the pivot.

Rearrange the list to obtain the following order of elements: moving from left to right in the list

we see all elements of the first sublist, then the pivot, and then all elements of the second sublist.

Once the list is rearranged, sort each sub-list using the same strategy.

Easy to see, that quicksort is a recursive routine. Selecting a pivot and splitting the list (with

rearranging) continues until there is no more than one element left (the base case).

Here is the description of the work of quicksort:

 IF the list contains more than one element

 Set the pivot // pick a pivot and save it at the end of the list

 Split the list //Rearrange the list into [first sublist] [pivot] [second sublist]
 Quicksort the first sublist //elements smaller than pivot are sorted

 Quicksort the second sublist //elements greater than pivot are sorted

Because quicksort is recursive, its Java implementation, just as mergesort’s implementation, will

include two methods: one is a public method that the client invokes to sort the given list, and the

second is a private method (a recursive method) to do the “behind-the-scenes” work on list

segments. Thus, its Java implementation of quicksort will include this code:

 public static void quickSort (int[] list, int N) { quickSort(list, 0, N-1); }

 private static void quickSort (int[] list, int first, int last) //sorts list[first..last] segment

 { if (first < last) //checking if there is more than one element in list[first..last] segment

 { setPivotToEnd(list, first, last); //supporting method

 int pivotIndex = splitList (list, first, last); //supporting method

 quickSort(list, first, pivotIndex-1);

 quickSort(list, pivotIndex+1, last);

 } }

There are two private supporting methods: setPivotToEnd and splitList that need to be defined.

1) The setPivotToEnd method chooses the pivot value and places it as the last element of the

list, so after this method is done, we guarantee that the pivot value is the last element in the array

segment given as a parameter. The signature of this method is this:

 private static void setPivotToEnd (int[] arr, int left, int right)
 //Chooses a pivot in arr[left..right] and place it at the end of the segment

 //Precondition: none

 //Postcondition: arr[right] is the pivot.

 5

One thing to discuss is the strategy for choosing the pivot. There are different ways to do it

(some good, some bad). If we choose a particular element in the list – e.g. the first or last

element (bad idea) – the algorithm may take O(N2) time since that may trigger the worst case

scenario. Choosing a random element in the list doesn’t give the best choice either.

We’ll use one of the better strategies: as a pivot we’ll take the median of three elements – the

median of first, last, and center elements of the list segment.

Note: a median of N elements is the N/2-th largest element.

Example: For the following list { 7, 8, 1, 5, 2, 9, 12, 10 }

The pivot will be chosen to be the median of 7, 5, 10 which is 7.

In addition to picking the pivot as the “median of 3”, we will apply a special trick which

will make the worst case scenario of this algorithm very unlikely: we will rearrange those

three elements – arr[left], arr[center], and arr[right] – so that the smallest of the three is at the

left index, the largest of the three is at the center index, and the median of the three is at the right

index. Remember that the center index is calculated as: center = (left+right)/2).

For the above example, when setPivotToEnd finishes its work, the content of the list

is as follows: { 5, 8, 1, 10, 2, 9, 12, 7 }

Implement setPivotToEnd method on your own. Its work is very simple and consists of only 3

comparisons and swaps. You should compare 3 elements (first, last, and center elements of the

list segment) and swap them properly to get the smallest of the three to be at left index, largest of

the three to be at center index, and the median of the three to be at right index. As a result we get

the pivot chosen (it is the median of the three) and placed at the end of the list segment.

Important: you must accomplish the task with just 3 comparisons (3 if-statements, no else’s):

1. Compare the fist and center elements and get the smaller of the two to be at left index

2. Compare the first (it is the smaller of previously first and center elements) and last

elements and get the smaller of the two to be at left index.

After this step, the smallest of the three elements will be at the left index.

3. Now there are only 2 elements left to re-arrange. Compare the center and last elements

and get the larger of these two to be at center location (this is the largest of the three

elements). Consequently, the median of the three will end up being at right index.

2) In the splitList method we rearrange the elements of the list segment so that the pivot-value

is preceded by smaller values and followed by greater values of the segment. This method must

be called after the pivot has been selected and placed at the end of the list (it has a precondition):

 private static int splitList (int[] arr, int left, int right)
 //Rearranges the list by placing the pivot so that it is preceded by smaller

 //values and followed by greater values. Returns pivot’s index.

 //Precondition: arr[right] contains the pivot

 //Postcondition: the pivot is properly placed and its index is returned.

 // Elements in the list are arranged so that arr[i]<pivot for all arr[i]

 // located to the left of pivot, and arr[i]>pivot for all arr[i] located to

 // the right of the pivot.

Let’s see how the splitting of the list segment arr[left..right] is done (remember, the pivot is the

last element in the list segment).

We define two indexes: indexL (starts with the first index of the segment and gets incremented

by 1) and indexR (starts with the second-to-last element, the one in front of the pivot, and gets

decreased by 1). Note that these two indexes are for scanning elements of the segment, starting

with edges and moving towards the middle of the list segment.

 6

We start out by moving indexL to the right for as long as the value at it is smaller than the pivot-

value. Once indexL stops, we start moving indexR to the left for as long as it didn’t “cross over”

indexL (i.e. it didn’t become smaller than indexL) and the value at it is larger than pivot-value.

Note that at any moment in the process all elements to the left of indexL are smaller than the

pivot (although they are not sorted), and all elements to the right of indexR are greater than the

pivot (although they are not sorted). Once indexR stops, if the two indexes didn’t “cross over”, it

means that arr[indexL] and arr[indexR] elements are on the wrong sides of the list segment, so

we need to swap them. We repeat actions defined in this paragraph all over again.

The process stops when indexL and index R “cross over” (i.e. indexL>indexR).

At this point the element at indexL, which will be the first element greater than pivot, is swapped

with the pivot element located at the end of the list segment. Now the pivot is located at indexL

position, thus indexL should be returned by the method.

Example1: The list segment is the following: {1, 5, 15, 4, 2, 17, 7, 12, 0, 13, 3, 9, 8, 6}.

 When the indexes stop moving, the list segment has the following content:

 {1, 5, 3, 4, 2, 0, 7, 12, 17, 13, 15, 9, 8, 6}

Note: underscored elements have been moved, each color (other than red) is indicating a pair

of elements that have been swapped during the execution of the method.

At this time indexL is pointing at 7. As a last step, the pivot is swapped with 7.

The final content of the list segment is: {1, 5, 3, 4, 2, 0, 6, 12, 17, 13, 15, 9, 8, 7}

Example2: The list segment is the following: { 1, 8, 2, 10, 4, 5, 9, 11, 3, 12, 15, 7}

 When the indexes stop moving, the list segment has the following content:

 { 1, 3, 2, 5, 4, 10, 9, 11, 8, 12, 15, 7}

Note: underscored elements have been moved, each color (other than red) is indicating a pair

of elements that have been swapped during the execution of the method.

At this time indexL is pointing at 10. As a last step, the pivot is swapped with 10. The final

content of the list segment is: { 1, 3, 2, 5, 4, 7, 9, 11, 8, 12, 15, 10}

Here is the description of the work done by the splitList method:

 SET indexL to the first cell of the list segment

 SET indexR to the second-from-last cell of the list segment

 SET pivot to the last element of the list segment //for clarity, save pivot-value in variable pivot
 WHILE the two indexes didn’t “cross over”

 Move indexL right as long as elements are smaller than pivot

 Move indexR left as long as it’s not crossed over indexL & elements are greater than pivot

 IF the two indexes aren’t “crossed over”

 Swap elements at these two index positions

 Move indexL and indexR one cell to right and left respectively

 Swap the element at indexL position with the pivot //pivot is at the last cell of the list segment

 RETURN indexL

Attention: This routine as is works correctly if duplicates are allowed in the list (no changes

should be made anywhere).

