
LAB EXPLORATION EXAMPLEPRIVATE 

Lab Exploration - Revenue Program (C++) from Adams text (source attached)

I read chapter 2 and 3 in the Adams text, and choose the Revenue program to investigate in my lab explorations.

TEST PLAN

According to the text, when I run the revenue program, the following prompt for input should appear:



Please enter:



  
   the number of installations and




   the yards of cable used.

I will provide input data from column 2 in the table below.  The following output message should be displayed:



The revenue generated = $

The amount calculated should appear after the dollar sign.  The expected result (column 3) is determined by the formula:



Installations * 25 + Yards of cable * 2 * 3

The actual results from running the tests are written in column 4.  Question marks indicate a discrepancy between expected and actual results.

Purpose
Input Data
Expected Output
Actual Output
1) Data shown in textbook


27  263.0
$2253
$2253

2) Simple case


1 1 
$31 (1*25+1*6)
$31


1 2
$37
$37


2 1
$56
$56


2 2
$62 
$62

3) Two digit numbers


1 10
$85 (1*25+10*6)
$85


10 1
$256



4) Leading blanks


   1  1
$31
$31

5) 2nd value on new line


1


1
$31
$31

6) Separated by commas (like in BASIC)


1, 1
$31
$25 ??

7) Negative numbers


1  -1
$19
$19


-1  1
-$19
$-19 ??

8) Zero


1 0
$25
$25


0 1
$6
$6  

9) Decimal points


1 1.0
$31
$31


1 1.5
$34
$34


1 1.25
$32.50
$32.5   ??


1 1.333
$33
$32.998 ??


1.0 1
$31
$25 ??


1.5 1
$43.5
$28 ??



1.0 1.0
$31
$25 ??

10) characters


1 a
error?
$25 ??


a b
error?
$340650 ??


TESTING SUMMARY


The program seems to work properly for simple test cases where the input data is positive whole numbers.  

Discrepancies:


Incorrect results are provided if the input values are separated by a comma.


The output for a negative result is displayed oddly, with the negative after the dollar sign instead of before.


It doesn't display the number of cents properly -- there should be exactly 2 decimal places, but sometimes it does more or less.  Also, maybe this is related, it doesn't round properly to whole cents.


It appears to work properly for decimal values of yards of cable, but not for decimal values for number of installations.


It provides unexplained results for input of character values.

Suggestions (my opinion):


The prompt for input should give more instructions.  It isn't clear how the input data is to be entered.  Are the values to be typed on a single line, or multiple lines?  Are decimal points required?  Is the order important, or can I type either one first?  It might be best to prompt for each input value separately.


In this problem, it doesn't make sense to have input data which is zero or negative.  How can you have negative yards of cable?  How can you charge somebody for zero installations?  Yet this program displays a result anyway, which seems like a bad thing to do.  It should give an error message.


Similarly, it doesn't make any sense to allow decimal values for number of installations.  If this occurs, the program should give an error message or let the user re-enter the data.  


If character values are entered, an error message should be displayed.

QUESTIONS ABOUT THE SOURCE CODE

As I inspected the source code to the Revenue program, the following questions occurred to me:

Is there some significance to the line of all dashes (line 8)?

Is the "less than" sign in line 10 mean the same thing as the two "less than" signs in line 27?

Why does line 10 begin with # but not any other lines?

Why the word "void" in line 12?  Doesn't void mean to cancel?  

Why does line 15 have a comma, but line 16 has a semicolon?

In line 20, why do we want to double the yards of cable?

In line 28, why is the letter 't' written twice?

What does the backslash mean in line 28

What is the meaning of "return 0" on line 44?

Why isn't there a semicolon at the end of every line?

BEBUGGING

I inserted the following changes into the code and observed the effects noted:

Change the comma in line 15 to a semicolon.


Error: (S) "CostPerFoot" is undefined.  

Remove the decimal point and two zeroes from 2.00 in line 16.


No errors.  Executes ok.  


It appears the decimal points aren't necessary.

Omit the quotation marks on line 27.

 (S) Syntax error ‑ expected ";" and found "enter".  

In line 25, delete the first letter 't'. 


No errors.  Executes ok.


Second line of output shows:

        
he number of installations, and  


I don't understand this.  Why are two t's needed to get one to display?  


Try:  Delete the backslash.


No errors.   Executes ok.  Now the second line is output as:

he number of installations, and  


OK, I get it.  The backslash and the first 't' make it TAB, and it's just a coincidence that the first letter in the sentence is a 't'.  This 'backslash' stuff seems weird to me.  Why don't they just have a reserved word, TAB?

In line 27, delete one of the two "less than" signs.


Error (S) The "<<" operator is not allowed between "char*" and "char*".  

In line 27, add a semicolon at the end of the line.


Error: (S) Syntax error ‑ expected "expression" and found "<<".  

In line 37, make the first character of "Revenue" lower case.


Error line 37 (S) "revenue" is undefined.  

Change the 0 in line 44 to 1.


No errors.  Executes ok.  


It seems to have no effect on the program.

Delete the 0 in line 44.


Error: (E) Return value of type "int" is expected.  


That's peculiar.  Even though it doesn't matter what number you put after the word RETURN, you can't just omit it.  

Delete all the dashes in line 8, but leaving the "//"


No errors.  So I guess the dashes are just cosmetic.

SYNTAX CHANGES
Add a new line after line 7:  // Modifed by: J. Dalbey


No errors.

Line 35: change to YardsOfCable * 3.0


No errors.  Executes ok.  

Add to end of line 37:   // Revenue formula


No errors.  Execute ok.  


So I can put a comment right in the middle of an equation!

Change line 35 to : YardsOfCable * 6.0;


No errors.  Executes ok.  Gives different results.

Combine lines 27, 28, 29 all onto one line.


No errors.  Executes ok.

Line 27: Change to all one sentence:


cout << "Enter # of installations and yds of cable";


No errors.  Executes ok.  The prompt is changed as expected.

Line 31: move >> YardsOfCable; to the next line.


No errors.  Executes ok.


So there is nothing requiring that the input variables all have to be on the same line.

Line 42: move << Revenue to the next line.


No errors.  Executes ok. Maybe that explains why there isn't a semicolon at the end of each line.  Some statements can be broken across multiple lines.

Line 37: move "generated ..." to the next line.


Errors: (S) The string must be terminated before the end of the line.  


Errors:  (S) Syntax error ‑ expected ";" and found "generated".  


Errors:  (E) Unrecognized source character "$", code point 0x24.  


Errors: (S) The string must be terminated before the end of the line.  


Oops, so, you can't break your message across two lines.

SEMANTIC CHANGES
change line 31 to two separate statements:


cin >> Installations;


cin >> YardsOfCable;


No errors.  Executes ok.

Change double in line 22 to int.


No errors.  Executes ok.  I don't know why they used double, it's not like we expect that the revenue is going to be millions of dollars or something that requires a double sized variable.

CODE SYNONYMS
Line 37: Change Revenue to Installations * 25 + YardsOfCable * 6.0;


No errors. Executes ok.  So we can use number constants.

Line 31: Change to cin >> YardsOfCable >> Installations


When executing, change the order of input data, should give same answers.


No errors. 


Providing the input in regular order gives  $6737  


Changing the order gives the correct result,  $2253  

CODE MODIFICATIONS
Move the variable definitions (line 19-22) before the const definitions.


No errors.  Executes ok.


So I guess the const definitions don't have to be first.

Line 16: change 2.00 to 2.50.


Results should change accordingly.


No errors. 



Please enter:  

        

the number of installations, and  

        

the yards of cable used.  



1 1.0  



The revenue generated = $32.5  

Put parentheses around first expression in line 37 shouldn't make any effect on results, but put parentheses around ServiceCharge + CostPerFoot should give different answer.


No errors on the first one, and executes ok.


No errors on the second, result is way off: $575181  

CODE VARIATIONS
Change the program so that it reads FEET of cable, instead of yards.  So, change YardsofCable to FeetOfCable in line 28.


No errors.


Output:

Please enter:  

        the number of installations, and  

        the yards of cable used.  

27 263.0  

The revenue generated = $1201  


(27 * 25 + 263 * 2) Checks.

CODE IMPROVEMENTS
Do a separate prompt for each input value.


cout << "Enter number of installations: ";


cin >> Installations


cout << "Enter yards of cable used: ";


cin >> YardsOfCable;

No errors. Executes ok.  I think this is much nicer, to prompt and wait for each input separately.

CONCLUSIONS


It sure seems like a lot of work to write this program to compute a formula that I could do on my calculator in about 20 seconds.  But maybe this is just a simple example, and we'll see the more powerful uses later.


I learned how to input and output numbers, do simple formulas.  I learned that the variables must be defined before you can use them in an equation.  I learned some of the punctuation required for displaying messages.  I learned the comment statement, "//".  I still don't know what 'return' and 'include' are about, but I understand almost everything else in this program.

SOURCE CODE

// 

// Program:   Revenue

// Abstract:  This program calculates the revenue generated from  

//            installing coaxial cable.

//

// (Adapted from Adams, J., et. al. "C++ programming")

// 

//------------------------------------------------------------------  

#include <iostream.h>

int main(void)

{

   const double                // Constants:

      ServiceCharge = 25.00,   //   service charge per installation

      CostPerFoot = 2.00;      //   unit cable cost

                               // Variables:

   int      Installations;           // number of installations

   double   YardsOfCable;            // yards of cable used

   double   FeetOfCable;             // feet of cable used

   double   Revenue;                 // dollars generated

// Input (keyboard):  The number of installations

//                    The yards of cable installed

   cout << "Please enter:" << endl


<< "\tthe number of installations and" << endl

        << "\tthe yards of cable used." << endl;

   cin >> Installations >> YardsOfCable;

// Computations

   FeetOfCable = 3.0 * YardsOfCable;

   Revenue = Installations * ServiceCharge +

                CostPerFoot * FeetOfCable;

// Output (screen):   The revenue generated

   cout << endl << "The revenue generated = $" << Revenue << "\n\n";

   return 0;

}

