
Code Review Checklist - Java

1. Specification / Design

[] Is the functionality described in the specification fully implemented by the code?
[] Is there any excess functionality in the code but not described in the specification?

 2. Initialization and Declarations

[] Are all local and global variables initialized before use?
[] Are variables and class members of the correct type and appropriate mode
[] Are variables declared in the proper scope?
[] Is a constructor called when a new object is desired?
[] Are all needed import statements included?
[] Variable names are spelled correctly and consistently.
[] Make sure that primitive data types are not set to null or empty
[] Is 'static' keyword used correctly?

3. Method Calls

[] Are parameters presented in the correct order?
[] Are parameters of the proper type for the method being called?
[] Is the correct method being called, or should it be a different method with a similar name?
[] Are method return values used properly? Cast to the needed type?
[] When calling a method that has a return value, be sure to use the return value properly.

4. Arrays

[] Are there any off-by-one errors in array indexing?
[] Can array indexes ever go out-of-bounds?
[] Is a constructor called when a new array item is desired?
[] Are array declarations syntactically correct?
[] Are the row and column being indexed in the right order for a 2D array

5. Object Comparision

[] Are all objects (including Strings) compared with "equals" and not "=="?

6. Output Format

[] Are there any spelling or grammatical errors in displayed output?
[] Is the output formatted correctly in terms of line stepping and spacing?

Version 1.1 © Copyright 2016 John Dalbey

7. Computation, Comparisons and Assignments

[] Do all statements end with a semicolon?
[] Check order of computation/evaluation, operator precedence and parenthesizing
[] Can the denominator of a division ever be zero?
[] Is integer arithmetic, especially division, ever used inappropriately, causing unexpected
truncation/rounding?
[] Check each condition to be sure the proper relational and logical operators are used.
[] If the test is an error-check, can the error condition actually be legitimate in some cases?
[] Does the code rely on any implicit type conversions?

8. Exceptions

[] Are all relevant exceptions caught?
[] Is the appropriate action taken for each catch block?

9. Flow of Control

[] In a switch statement is every case terminated by break or return?
[] Do all switch statements have a default branch?
[] Check that nested if statements don't have “dangling else” problems.
[] Are all loops correctly formed, with the appropriate initialization, increment and termination
expressions?
[] Are open-close parentheses and brace pairs properly situated and matched?
[] Do logical expresssions evaluate to the correct true or false value?
[] Do boolean functions return the correct value?

10. Files

[] Are all files properly declared and opened?
[] Are all files closed properly, even in the case of an error?
[] Are EOF conditions detected and handled correctly?
[] Are all file exceptions caught?

Version 1.1 © Copyright 2016 John Dalbey

