
Software Release

Driving the software to a releasable condition at the end

of each stage is essential to managing the risks of

unsuccessful integration and poor quality. Determining

whether the software is good enough to release is

difficult to do intuitively. Fortunately, several simple

statistical techniques can help with that determination.

The release stage can be a hectic time, and the use of a

Release Checklist helps avoid problems.



222

III Succeeding by Stages

s each stage winds to a close, the project team will either symbolicallyA or literally release the software. Whether symbolic or literal, driving
the software to a releasable state at the end of each stage is important. The
defect count should be brought down to a point where the software could
be released to the public, fit-and-finish issues should be addressed, the user
documentation should be brought into alignment with the as-built software,
and so on.

TREATING RELEASES SERIOUSLY

Overlapping the release phase of one stage with the detailed design phase of
the next stage is often a good idea. On a project that doesn’t use design and
code reviews, developers are held hostage by defect corrections during the
release stage. On a project that has done a good job of assuring quality
throughout the stage, there won’t be enough release-related work to keep
developers busy full time, and they will be eager to move on to the next stage.

There are strong temptations to treat part-time release work as a sec-
ondary priority. Developers will be more eager to begin work in new areas
than to fix problems in old areas. Making progress on new designs and
implementations will seem more productive than fixing minor problems
with old work.

The entire project team should treat driving the
software to a releasable state at the end of each

stage as its top priority.

The success of the staged delivery approach relies on bringing the soft-
ware to a releasable quality level and embracing all the extra quality assur-
ance and development work that that entails. Bringing the software to a
releasable condition eliminates dark corners in which unforeseen work can
accumulate, improving status visibility. If the release phase of a particular
stage is allowed to drag on for weeks or months while most of the project
team has moved on to the next stage, the ability to determine the project’s
true status will be lost.



223

16 Software Release

Driving to a releasable state also eliminates the places where insidious
quality problems can hide. Without periodically raising the software’s qual-
ity to a releasable level, the software will begin a slow slide toward low
quality, whence it may never return.

I audited a project on which the developers had originally planned to
deliver the software in stages. As they approached the end of Stage 1, they
decided that they didn’t have time to drive the software to a releasable con-
dition, so they moved directly into the development work for Stage 2. By the
time my audit team reviewed that project’s progress, the project was months
behind schedule, mostly because the developers were stuck in an extended
test-debug-correct-test cycle. Every defect they fixed seemed to give rise to
at least one more defect.

The root of the project’s problem was that it had accumulated a large
mass of low quality code. When developers added new code, they couldn’t
tell whether new defects originated from the new code or from the low
quality old code. That dramatically increased the time required to debug
problems, and made their corrections more error prone. The team finally
worked its way out of the situation by calling a complete halt to new code
development and focusing the developers solely on fixing defects for more
than a month.

The developers’ decision at the end of Stage 1 that they “didn’t have
time” to drive the software to a releasable state was one of the most costly
decisions they could have made. They probably were behind schedule when
they made that decision. But their decision ultimately put them further be-
hind schedule. If they had stuck to their original plan and had driven their
software to a releasable condition at the end of Stage 1, they would have
reduced their subsequent test, debug, and correction efforts by a huge factor.

Developers can begin working on the detailed design for the next stage
during the release phase of the current stage, but they must be ready to drop
their design work at a moment’s notice to correct defects detected in the
previous stage’s work.

WHEN TO RELEASE

The question of whether to release software is a treacherous one. The answer
must teeter on the line between releasing poor quality software early and
releasing high quality software late. The questions of “Is the software good



224

III Succeeding by Stages

enough to release now?” and “When will the software be good enough to
release?” can become critical to a company’s survival. Several techniques can
help you base the answers to these questions on a firmer footing than can
the instinctive guesses that are sometimes used.

DEFECT COUNTS

At the most basic level, defect counts give you a quantitative handle on how
much work the project team has to do before it can release the software. You
can get a summary of the number of remaining defects remaining in order
of priority: “2 critical defects, 8 serious defects, 147 cosmetic defects,” and
so on.

By comparing the number of new defects to the number of defects
resolved each week, you can determine how close the project is to comple-
tion. If the number of new defects in a particular week exceeds the number
of defects resolved that week, the project still has miles to go. Figure 16-1
shows an “open defects” graph, which tracks the status of defects.

Reported
Open
Fixed

Time

Defects

FIGURE 16-1 Example of an “open defects” graph. Making this graph public empha-
sizes that controlling defects is a high priority and helps to keep potential quality prob-
lems under control.

If the project’s quality level is under control and the project is making
progress toward completion, the number of open defects should generally
trend downward after the middle of the project and then remain low. The
point at which the “fixed” defects line crosses the “open” defects line is



225

16 Software Release

psychologically significant because it indicates that defects are being cor-
rected faster than they are being found. If the project’s quality level is out of
control and the project is thrashing (not making any real progress toward
completion), you might see a steadily increasing number of open defects.
This suggests that steps need to be taken to improve the quality of the ex-
isting designs and code before adding more new functionality.

STATISTICS ON EFFORT PER DEFECT

The data on time required to fix defects categorized by type of defect will
provide a basis for estimating remaining defect-correction work on this and
future projects. When you collect this information, by the middle of the
project you’ll be able to say things like, “The project has 230 open defects,
and the developers have been averaging 3 hours per defect correction, so the
project has approximately 700 hours of defect correction activity remaining.”

The data on phases in which defects are detected and corrected also
gives you a measure of the efficiency of the development process. If 95 per-
cent of the defects are detected in the same phase they were created, the
project has a very efficient process. If 95 percent of the defects are detected
one or more phases after the phase in which they were created, the project
has a lot of room for improvement.

DEFECT DENSITY PREDICTION

One of the easiest ways to judge whether a program is ready to release is to
measure its defect density—the number of defects per line of code. Suppose
that the first version of your software, GigaTron 1.0, consisted of 100,000 lines
of code, that the quality assurance group detected 650 defects prior to the
software’s release, and that another 50 defects were reported after the soft-
ware was released. The software therefore had a lifetime defect count of 700
defects, and a defect density of 7 defects per thousand lines of code (KLOC).

Suppose that GigaTron 2.0 consisted of 50,000 additional lines of code,
that QA detected 400 defects prior to release, and another 75 after release.
The total defect density of that release would be 475 total defects divided by
50,000 new lines of code, or 9.5 defects per KLOC.

Now suppose that you’re trying to decide whether the GigaTron 3.0 has
been tested enough to release. It consists of 100,000 new lines of code, and
QA has detected 600 defects so far, or 6 defects per KLOC. Unless you have
a good reason to think that the development team’s development process has



226

III Succeeding by Stages

improved with this project, your experience should lead you to expect be-
tween 7 and 10 defects per KLOC. The number of defects the project team
should attempt to find will vary depending on the level of quality you’re
aiming for. If you want to remove 95 percent of all defects before releasing
the software, the project team would need to detect somewhere between 650
and 950 prerelease defects. This technique suggests that the software is not
quite ready to release.

The more historical project data you have, the more confident you can
be in the prerelease defect density targets. If you have data from only two
projects and the range is as broad as 7 to 10 defects per KLOC, that leaves a
lot of wiggle room for an expert judgment about whether the third project
will be more like the first or the second. But if you’ve tracked defect data for
10 projects and found that their average lifetime defect rate is 7.4 defects per
KLOC with a standard deviation of 0.4 defects, you have a great deal of
guidance indeed.

DEFECT POOLING

Another simple defect prediction technique is to separate defect reports into
two pools. Call them Pool A and Pool B. The testing team then tracks the
defects in these two pools separately. The distinction between the two pools
is essentially arbitrary. You could split the testing team down the middle and
put half of its reported defects into one pool, half into the other. It doesn’t
really matter how you make the division as long as both reporting pools
operate independently and both test the full scope of the software.

Once you create a distinction between the two pools, the testing team
tracks the number of defects reported in Pool A, the number in Pool B—and
here’s the important part—the number of defects that are reported in both
Pool A and Pool B. The number of unique defects reported at any given time
is this:

DefectsUnique = DefectsA + DefectsB − DefectsA&B

The number of total defects can then be estimated by using this simple
formula:

DefectsTotal = (DefectsA * DefectsB) / DefectsA&B

If the GigaTron 3.0 project has 400 defects in Pool A, 350 defects in Pool
B, and 150 of the defects in both pools, as is shown in Figure 16-2, the num-
ber of unique defects detected would be 400 + 350 − 150 = 600. The approxi-
mate number of total defects would be (400 * 350) / 150 = 933. This technique



227

16 Software Release

suggests that there are approximately 333 defects yet to be detected (about
a third of the estimated total defects). Use of this technique reveals that qual-
ity assurance on this example project still has a long way to go.

Pool A Pool B

350 defects
(200 just in B)400 defects

(250 just in A)

150
defects

FIGURE 16-2 Defect pooling. The number of unique defects can be estimated based on
the overlap of defects reported in the separate pools.

The defect pooling technique involves a significant amount of over-
head in keeping track of two separate lists of defects and identifying the
defects that are common to both lists. It also involves the overhead of cov-
ering the entire scope of the software with two independent testing groups.
Because of the overhead involved, this technique is best suited to projects
that need to be especially accurate in determining their remaining defects
prior to release.

DEFECT SEEDING

As Figure 16-3 on the next page suggests, defect seeding is inspired by a
well-developed statistical technique in which a sample from a population
is extracted and used to estimate the total population. For example, to es-
timate the number of fish in a pond, biologists would tag a certain num-
ber of fish and release them back into the pond. They would then capture a
sample of fish and compare the number of tagged and untagged fish that
were captured to estimate the total number of fish in the pond.

Defect seeding is a practice in which defects are intentionally inserted
into a program by one group for detection by another group. The ratio of the
number of seeded defects detected to the total number of defects seeded
provides a rough idea of the total number of program defects that have been
detected.



228

III Succeeding by Stages

Defects Found
Seeded
Indigenous

Defect Pool

FIGURE 16-3 Defect seeding. Defects can be estimated based on the ratio of seeded de-
fects found to indigenous defects found.

Suppose that on GigaTron 3.0, the development team intentionally
seeded the program with 50 errors. For best effect, the team’s seeded errors
should be designed to cover the full breadth of the software’s functionality,
and they should also cover the full range of severities—from crashing errors
to cosmetic errors.

Suppose that at a point in the project when you believe testing to be
almost complete, you look at the seeded defect report. You find that 31
seeded defects and 600 indigenous defects have been reported. You can es-
timate the total number of defects with this formula:

DefectsTotal = (DefectsSeededDefectsPlanted / DefectsSeededDefectsFound) * DefectsFoundSoFar

According to this formula, GigaTron 3.0 has approximately this num-
ber of total defects: (50 / 31) * 600 = 968. Almost 400 defects have yet to be
detected.

To use defect seeding, the developers must seed the defects prior to the
beginning of the tests whose effectiveness you want to ascertain. If the test-
ing team uses manual methods and has no systematic way of covering the



229

16 Software Release

same testing ground twice, the developers should seed defects before that
testing begins. If the testing team uses fully automated regression tests, the
developers can seed defects virtually any time to ascertain the number of
indigenous defects the automated tests have detected.

A common problem with defect seeding programs is forgetting to re-
move the seeded defects. Another common problem is that removing poorly
designed seeded defects can introduce new errors. To prevent these prob-
lems, be sure to remove all seeded defects prior to final system testing and
software release. Some projects require that seeded defects be kept extremely
simple, and they allow introduction of only those seeded defects that can be
created by adding exactly one line of code.

DEFECT MODELING

With software defects, no news is usually bad news. If the project has
reached a late stage with few defects reported, there is a natural tendency
to think, “We finally got it right and created a program with almost no de-
fects!” In reality, no news is more often the result of insufficient testing than
of superlative development practices.

Some of the more sophisticated software project estimation and control
tools1 contain defect modeling functionality that can predict the number of
defects you should expect to find at each stage of a project . By comparing the
number of defects actually detected to the number predicted, you can assess
whether the project is keeping up with defect detection or lagging behind.

THE RELEASE DECISION

If you follow the practices described in this book, you’ll have solid informa-
tion upon which to base the decision about whether software is ready to
release. These sources of information include the following:

0 Code growth statistics and graph (refer to Figure 5-6 on page 62)

0 Detailed list of binary miniature milestones completed

0 List of raw defects from the defect tracking system

0 Cumulative defect statistics and graph (refer to Figure 16-1 on
page 224)

1. For a current list of these tools, see the Survival Guide Web site.



230

III Succeeding by Stages

0 Effort-per-defect statistics

0 Defect density prediction

0 Defect pooling

0 Defect seeding

0 Defect modeling

Evaluating combinations of these readiness indicators will give you
more confidence than you could have from evaluating any of the techniques
individually. Examining defect density alone on GigaTron 3.0 suggested that
you should expect 700 to 1000 total lifetime defects, and the project team
should remove 650 to 950 defects before software release to achieve 95 per-
cent prerelease defect removal. If the project team had detected 600 defects,
the defect density information alone might have led you to declare the soft-
ware “almost ready to release.” But defect pooling analysis estimated that
GigaTron 3.0 will produce approximately 933 total defects. Comparing the
results of those two techniques suggests that you should expect a total de-
fect count toward the high end of the defect density range instead of the low
end. Because the defect seeding technique also estimated a total number of
defects in the 900s, it seems evident that GigaTron 3.0 will exhibit a relatively
large total number of defects and that the project should continue testing.

DEFECT TRACKING AND COMMUNICATION

Publicizing the kind of status and quality information discussed in this sec-
tion helps to keep the project on track. The project team should post defect
summary information in a public place, such as in the project break room,
on the project manager’s office door, or on a project intranet Web page.

RELEASE CHECKLIST

At the end of a stage, even on the best projects, the most serious errors
committed are often simple oversights. People want their work to be done,
feel that it is done, and have a tendency to skip seemingly obvious details.

Very early in my software career I was the project manager for an in-
surance consulting company that provided insurance rate quotation pro-
grams for its clients. These were very simple programs by today’s standards,



231

16 Software Release

each involving no more than about 3 staff-months of effort to create, and
most requiring considerably less development time. Even with these simple
programs, we managed to run into the most common problem with software
releases—simply forgetting some of the things we knew we needed to do
before we released the software to our clients! As a result of our hard-won
experience, we created a Release Checklist, which included items like this:

0 Make exact duplicates of diskettes before sending them out.

0 Make a list of all the people receiving the program and the num-
ber of diskettes mailed to them.

0 Put postage on packages sent to clients.

If you read between the lines, you might guess that at one time we
didn’t keep exact copies of the programs we mailed out and couldn’t repro-
duce problems clients reported. We sometimes didn’t know which clients
had received which programs, and one time we even forgot to include post-
age on a program we sent to a client.

More sophisticated applications require more sophisticated release
procedures, but the basis of any release procedure will still be a checklist of
activities that need to be done before the software can be released, and that
checklist will inevitably consist of many activities that were forgotten at one
time or another. A Release Checklist for a simple program might contain only
a handful of items. The Release Checklist for an extremely complicated pro-
gram such as Microsoft Windows 95 might contain 200 items or more.

Table 16-1 (on pages 232–233) shows some of the items that should be
included on the Release Checklist for a medium-sized software product that
will be released to the general public. The focus of the list is not on testing—
by this time it is too late in the project to start worrying about that. The fo-
cus is on items that are easily overlooked in the haste to push the software
out the door.

If the project team is releasing the software to in-house users, the check-
list will look different, but the same idea applies: the checklist should cap-
ture the critical release activities the project team doesn’t want to forget in
the rush to release the new system. The project team should put together
Release Checklists for interim releases and for the final release. The different
lists will not be identical but will have many points in common.


