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Abstract: This work presents a new approach to reconstructing surfaces of underwater structures from stereo images and
sonar scans collected with a micro-ROV on the islands of Malta and Gozo. Using a limited sensor load, sonar
and small GoPro Hero2 cameras, the micro-ROV is able to explore small hard to reach water systems and
gather data. Our algorithm is able to reconstruct geometric models of explored regions, even when the data is
noisy and sparse. As a preprocess to the reconstruction pipeline, a 3D evidence grid is created by mosaicing
horizontal and vertical sonar scans. A rough implicit surface representation can then be reconstructed using
a level set method. Small stereo cameras mounted to the ROV capture fine- and medium-scale details from
the scene and store them in stereo image pairs, which are transformed into point clouds and projected into the
volume. A raycasting technique is used to trim the volume in accordance with the projected point clouds, thus
reintroducing finer details to the previously rough model. The resulting volume is surfaced, yielding a final
mesh, which can be viewed and interacted with for archaeological and educational purposes. Initial results
from both steps of the reconstruction pipeline are presented and discussed.

1 INTRODUCTION

Many underwater sites such as cisterns, small sea
caves, and other areas inaccessible to humans offer
extraordinary opportunities for archaeological study.
Remotely Operated Vehicles (ROVs) are commonly
employed to explore such sites due to their small
size, maneuverability, and sensor payload capacity.
A common research goal between archaeologists and
scientists exploring these sites is the ability to cre-
ate accurate reconstructions of the geometry found
within. These reconstructions can be used to visualize
scale, structure, and water level, examine interesting
features more closely, and potentially date the cisterns
and surrounding sites.

In this work we focus on the creation of sur-
face meshes of underwater cisterns and water gal-
leries from a sparsely populated 3D evidence grid in-
put. The evidence grid input is created from a uni-
fied map of several horizontal and vertical sonar scans
of walls and other geometry, which are collected
with a sonar sensor mounted to a micro submersible
ROV (McVicker et al., 2012). Previous work has suc-
cessfully reconstructed 2D and extruded 2.5D meshes
of scanned surfaces using an iterative probabilistic
hole filling approach and marching cubes, using 2D
evidence grids from sonar scans as an input (Forrester
et al., 2013). Unfortunately, this method does not gen-
eralize well to sparsely sampled 3D evidence grids,
thus inhibiting the reconstruction of surfaces repre-

sentative of true site geometry.

The work presented in this paper is motivated by
an ongoing interdisciplinary project with the broad
goal of exploring and mapping cisterns, water gal-
leries, and shoreline caves on the islands of Malta,
Gozo, and Sicily for archaeological study. Using an
ROV, these water storage cisterns, which date back
as far as 350 B.C.E., were explored with a micro-
ROV while collecting sonar scans, depth measure-
ments, compass measurements, video and stereo im-
ages (Fig. 1). Six different expeditions have re-
sulted in the exploration of over 100 sites. For
more information on evidence grid generation and the
ROV cistern mapping project, see (McVicker et al.,
2012), (Forney et al., 2011), and (Dobke et al., 2013).
Due to the small entry-ways to these water systems,
limited sensors were used, making data collection
challenging and resulting in fairly sparse sonar data
and poor stereo images (albeit densely sampled). Our
reconstruction pipeline must handle both of these as-
pects of the data: varying density and overall sparsity.
For surface reconstruction of sparse 3D sonar data,
we use level sets (Fig. 2). Unlike other hole filling
algorithms, level set methods are capable of produc-
ing closed surfaces independent of the sample rate in
the original evidence grid. The level set method out-
puts a 3D implicit surface which is used to compute
a volume. The reconstructed volume serves as a good
rough approximation of the shape of the site’s true ge-
ometry. To add finer geometric details, stereo images



Figure 1: The VideoRay Pro III GTO is an underwater
micro-ROV with dimensions 36.8 cm x 28.9 cm x 21.6 cm.
The included sensors consist of a depth sensor, a compass,
and a front and rear video camera. A removable Tritech Mi-
cron scanning sonar was mounted to the top of the ROV, and
two vertically aligned GoPro Hero2 cameras were mounted
to the front in a waterproof stereo casing.

of interesting features captured within the cisterns are
turned into point clouds and projected into the vol-
ume. The point cloud data is considerably more dense
in the local region it represents compared to the sparse
3D sonar data. To address this difference in density,
the projected stereo point clouds are used as a basis
for raycasting, where all voxels in the volume which
lie beyond the projected point cloud have their oc-
cupancies set greater than zero. After trimming the
volume in this manner, the newly introduced zero-
crossings allow surfacing algorithms such as march-
ing cubes (Lorensen and Cline, 1987) to reintroduce
stereo features previously omitted from the model.
An overview of the algorithm pipeline is shown in
Fig. 3.

Presented in this paper are the details behind ap-
plying the new reconstruction algorithm to 3D sonar
and stereo image data. The proposed algorithm

(a) (b)
Figure 2: A two-chambered cistern in Mdina, Malta that
was explored and mapped. (a) displays the evidence grid
generated from 40 horizontal sonar scans taken while hover-
ing the ROV up the cistern at 0.2 m intervals. (b) shows the
water tight mesh produced by the first step of our pipeline.

can produce water tight geometric models, represent-
ing complex underwater storage systems, even given
sparse input data. We present results of three general
surface reconstructions from sparse 3D sonar and one
surface reconstruction with detailed geometry added
via stereo imagery.

2 RELATED WORKS

Surface Reconstruction: Surface reconstruction of
unorganized points in three dimensions is a well stud-
ied problem with many valid methods. One of the
most popular recent approaches is Poisson Surface
Reconstruction (Kazhdan et al., 2006). This method
takes a point cloud with oriented point normals as its
input and creates an indicator function (an inside out-
side table) which it can then use to determine connec-
tivity of input points and extract a 3D model.

In contrast, level set methods (Zhao et al., 2001)
take surface patches, curves and points as input and
generate a distance function to input data. Based on
the distance function created, an initial surface sur-
rounding the input data is generated. The initial sur-
face is updated based on vector and scalar fields gen-
erated from the moving surface interface and the input
data. A final surface representative of the initial data
set can be extracted when the initial surface reaches
the input data. Given the sparsity of our input data
and the lack of oriented normals, level set methods
are more appropriate for creating rough starting mod-
els in our setting.

Underwater Stereo Reconstruction: The creation
of accurate reconstructions from stereo images is a
field of ongoing study. Stereo matching is a dif-
ficult process, complicated further by the underwa-
ter setting where non-uniform illumination, visibility
falloff, and optical aberrations cripple matching algo-
rithms that work well in air. Entire research endeav-
ors have been devoted to characterizing attenuation
and light transmittance through water as a function of
sediment levels and object distance for stereo imaging
purposes (Nascimento et al., 2009). In (Swirski et al.,
2010), researchers were able to produce accurate dis-
parity maps of underwater scenes using light flicker.
However, there are no such light flicker effects in
the underground cisterns explored in this project with
which to base a stereo correspondance algorithm.

The same budget stereo camera system (side by
side GoPro Hero2 cameras) used in this project was
utilized in (Schmidt and Rzhanov, 2012) to generate
disparity maps of underwater scenes. While the cam-
eras were able to resolve certain features down to 3



Figure 3: The proposed algorithm pipeline to create 3D reconstructions of cisterns.

mm, they were not found to be ideal due to their short
3.5 cm baseline and domed lenses.

Several research efforts have focused on recon-
struction of underwater scenes from sensor informa-
tion. For example, in (Beall et al., 2010) and (Drap
et al., 2007), areas of the seafloor were reconstructed
through image mosaicing. In (Hurtós et al., 2009),
a sensor fusion approach is used to generate 3D mo-
saics of underwater settings using cameras, sonar, and
other sensors on an AUV. Finally, in (Mahon et al.,
2011), divers collected stereo images of a submerged
town which were used to reconstruct a surface of
the landscape. While many of these projects pro-
vide good means of reconstructing underwater sur-
faces, few attempts have been made to model closed
3D chambers without human aid. In addition, few of
the available stereo matching algorithms account for
poorly-lit underwater scenes with no sunlight pene-
tration.

3 SURFACE RECONSTRUCTION

Due to the small entryways to the water systems
we wish to map, only limited sensors can be used,
(two GoPro HD Hero2 cameras and a Tritech Sea-
Sprite sonar sensor). These limited sensors result in
fairly sparse sonar data and poor stereo images. In or-
der to construct the best representation of the under-
water system, our reconstruction pipeline must handle
both of these aspects of the data: varying density and
overall sparsity.

3.1 Evidence Grid Input

For our geometric reconstruction we take a 3D evi-
dence grid obtained from a Video Ray Pro III GTO
ROV and Tritech Micron scanning sonar (McVicker
et al., 2012). Unlike previous surface reconstruc-
tion attempts of cisterns which were made from 2D
data (Forrester et al., 2013), this work uses new 3D
sonar data sets. The input 3D evidence grid data
structure is a uniform grid with each cell containing

a probability that the cell represents a solid surface
(i.e. walls, stones, etc.). In order to turn this into a
true point cloud we only accept cells having a proba-
bility greater than a threshold, as points in the cloud.
We wish to fit a surface to this input data that best rep-
resents the measured environment. Given the sparsity
of the data, we use a level set method to fit a minimal
surface the input points.

3.2 Level Set Method

Level set surface reconstruction works by starting
with an initial surface that is a bounding volume of
the input data and iteratively moving the surface to-
wards the input data. This surface is represented as Γ,
the zero level set of a function, φ, in 3 dimensions.

In our implementation, we use a gradient flow
model to move the surface, as described in (Zhao
et al., 2001). Our adopted movement equation is:

∆φ = ∆t|~n|d(P−1)~g ·~n+ 1
P

dκ (1)

where ∆t is a fixed time step, ~n is the gradient of
φ, d is the distance to the nearest original data point,
~g is the gradient of the distance function, and κ is the
curvature of the current surface. ~n, φ, d, ~g, and κ are
all functions of 3 dimensions represented by voxels in
a volume.

Eq. 1 is used to iteratively move the function φ so
that its zero level set φ moves towards the final recon-
structed surface.

During each iteration we update the values of φ,
~n, and κ for the voxels in the volume. To increase
performance, we only calculate these values for points
in the narrow band. The narrow band is a set of voxels
which are near to the iterating surface, as described
in (Adalsteinsson and Sethian, 1994).

We calculate φ to be the distance from each voxel
to Γ. To calculate κ, we use the following equations,
adopted from (Osher and Fedkiw, 2003):



κ =φ
2
xφyy−2φxφyφxy +φ

2
yφxx+

φ
2
xφzz−2φxφzφxz +φ

2
z φxx+

φ
2
yφzz−2φyφzφyz +φ

2
z φyy (2)

Here, φx is the first partial derivative of φ in the x
direction. We use this second-order accurate central
difference formula

δφ
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=
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where φy and φz are similarly calculated. φxx is the
second partial derivative of φ in the x direction. We
use this second-order accurate finite difference for-
mula

δ2φ

δx2 =
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∆x2 (4)

where φyy and φzz are similarly calculated. φxy is
the second partial derivative of φ in the x and y direc-
tions. We use this second-order accurate finite differ-
ence formula
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where φxz and φyz are similarly calculated.
d must be calculated for all voxels in the volume,

which can be a prohibitively large number of calcula-
tions. To efficiently calculate the distance function we
use the fast marching method described in (Sethian,
2001).

The fast marching method works by considering
three sets of voxels:

1. Voxels with accepted distance values. Initially
this set containts all voxels on the surface, since
distance for these voxels is known to be zero.

2. Voxels adjacent to accepted voxels. Since these
voxels have neighbor voxels for which distance is
known, their distance can be easily calculated.

3. Voxels that are far away. These voxels will be con-
sidered once they become adjacent voxels.

The fast marching algorithm works by:

1. Selecting the adjacent voxel with lowest calcu-
lated distance.

2. Finding all neighbors of the selected voxel that are
in the far set and adding them to the adjacent set.

3. Calculating distance for all neighbors of the se-
lected voxel, using this new distance only if it is
less than any previously calcuted distance for that
voxel.

4. Moving the selected voxel to the accepted set.

5. Continuing iteration until the adjacent set is
empty.

The fast marching method is also applied to up-
dating φ during the surface iteration process.

Under ideal circumstances the surface reconstruc-
tion process can be exited once the surface no longer
changes significantly between iterations - at this
point a minimum surface of the input data has been
reached. However, in sparse data sets such as those
we collected from cisterns, the surface may be pulled
through gaps in the data where a surface actually ex-
isted. We therefore allow for human input to end the
surface reconstruction process early when an accept-
able surface has been reached but before that surface
has been pulled too far through holes in the data.

4 STEREO RECONSTRUCTION

While the 3D volumetric reconstructions from
Sec. 3 give a broad idea of the true shape of the cistern
geometry, the Tritech Micron scanning sonar fails to
capture small features such as crevices, rocky walls,
and archways due to a large 35◦ vertical beam angle.
In addition, both hardware and software resolution
constraints are introduced in the scan retrieval and ev-
idence grid generation preprocessing stages. These
limitations cause the volumetric 3D reconstructions
to omit many important small features. In the dispar-
ity merging step of our algorithm we account for the
limited resolution in our volumetric reconstructions
by reintroducing finer details captured in stereo im-
ages to the model. Note that stereo image pairs will
be of a significantly higher resolution than the sparse
3D sonar grid in a local region. This difference in res-
olution of data is handled by our algorithm using a
projective raycasting technique.

4.1 Disparity Map Generation

Fine- and medium-scale features from deployments
into cisterns and caves are captured and stored in
stereo image pairs using two vertically aligned GoPro
Hero2 cameras. The captured stereo images have mi-
nor barrel distortions due to the domed camera lenses
and non-uniform illumination due to the ROV’s poor
ability to fully light the scene, so all stereo images
are retouched by applying a constant lens and light-
ing correction. Stereo image pairs are then matched
to create disparity maps using MATLAB’s Computer
Vision System toolbox. The resulting collection of
disparity maps of interesting features are converted to



points clouds using pixel intensity for each point’s Z-
coordinate, and projected into the volumetric recon-
struction made in Sec. 3 by applying a 3D affine trans-
form.

Stereo vision is inherently challenged by the un-
derwater setting, and even after correction many
stereo images were plagued with non-uniform illu-
mination, visibility falloff, and optical aberrations.
These complications led to difficulties in feature
recognition and matching, and ultimately limited the
quality and number of disparity maps we were able to
produce.

4.2 Disparity Map Raycasting

Disparity maps are converted to 3D point clouds, a
more approachable data structure for raycasting, fol-
lowing

p =

px
py
pz

=

 Ix
Iy

δ(Ixy)

 (6)

where p ∈ P is a point in the point cloud P, I is a dis-
parity map image with pixel space coordinates (Ix, Iy),
and δ(Ixy) is the depth value stored in the intensity
of pixel Ixy (Fig. 4). The δ function is a calibration
function which maps a disparity value between left
and right stereo images to a real distance based on the
properties of the camera. δ is formulated such that one
unit in world space correlates to one meter in the real
world. Point clouds are then individually assigned to
projectors, which are implemented as user-controlled
objects that may be manually rotated and translated
within our program based on mouse and keyboard in-
put to allow the user to align the features captured in
the stereo images with features in the model. Rather
than using the pixel space point cloud, P, for raycast-
ing, we project points outwards from each projector,
ĵ, in such a way that points are constrained within
the projector frustum. This projection produces a new
point cloud, P′.

P′ = ∑
θ∈Θ

∑
φ∈Φ

p′ (θ,φ) (7)

p′ (θ,φ) = ĵ+δ(Ixy)(ŵ+ sin(φ)v̂+αsin(θ)û) (8)

where θ and φ are a horizontal and vertical an-
gle along the projected image plane such that Θ =
{−θmax, . . . ,θmax}, Φ = {−φmax, . . . ,φmax}, and θmax
and φmax equal half of the horizontal and vertical field
of view of the GoPro Hero2 GTO cameras, α is the
disparity map’s aspect ratio, and ŵ, û, and v̂ are the
basis vectors of the projector. Projectors are manu-
ally aligned in the volume to coincide with the ob-
served locations of the real geometry captured in each

Figure 4: A diagram of the projector and initial point cloud
of stereo data, P.

point cloud. Since projections are hand-aligned, it is
difficult to orient projections correctly within the vol-
ume. To aid the user in projector alignment, marching
cubes is run on the volume, producing a mesh of the
original surface. The mesh is visualized on top of the
volume so that the user may align projections with re-
spect to the mesh itself.

Once projectors are situated, rays are cast through
the viewports of the projectors. Rays originate at the
projector and are cast through each point in P′. Bre-
senham’s line algorithm (Bresenham, 1965) is con-
tinuously executed along each cast ray to find the next
voxel in the ray’s path. When the ray arrives at a voxel
containing a point, a boolean switch is triggered, set-
ting all following voxel occupancies greater than zero
(denoting that the voxel is outside of the surface). By
setting new occupancies in the volume, each ray cast
alters the position of the eventual surface by redefin-
ing several zero-crossings along voxel edges (Fig. 5).
Once a ray passes through a voxel whose occupancy
is already greater than zero, the ray is terminated to
make certain that no surfaces are trimmed uninten-
tionally.

Although ray casting cannot guarantee that all
voxels beyond the projected point cloud will be mod-
ified, the alterations to the occupancies in the volume
generally occur near walls, so cast rays do not diverge
far enough to miss any voxels. Additionally, projected
point clouds may be sampled with sub-pixel accuracy
allowing the ability to cast rays at a finer resolution,
effectively minimizing the possibility that a voxel will
be missed.

The original resolution of a volume is decided
based on the properties of the sonar sensor and the ca-
pabilities of the occupancy grid generation algorithm



utilized for the input to this reconstruction pipeline.
Since the original resolution of the volume is only
good enough to retain the details of the general sur-
face, the volume is subdivided prior to raycasting
to increase the amount of detail achieved in the ar-
eas which will be be modified by stereo data. In
most cases the volume can be subdivided one to three
times, yielding 8x to 512x as fine of a resolution.
In order to facilitate smooth surface generation using
marching cubes, voxel occupancies are interpolated
trilinearly between subdivisions.

The algorithm is currently limited by memory
consumption. Even with efficient data storage struc-
tures, the entire volume must be subdivided, so
medium volumes subdivided in excess of two times
will crash. Due to the volume subdivision limitations,
the algorithm cannot truly add the same level of de-
tail to the mesh as what is stored in the stereo images.
Future work includes multi-resolution approaches to
address this issue.

5 SURFACING AND
VISUALIZATION

Marching cubes is run on the trimmed volume to
produce a closed surface mesh, which can be visual-
ized and interacted with by researchers. In addition
to being able to manipulate the mesh in our visualiza-
tion software, the interpolated marching cubes mesh
is rendered in Cinema4D with a bump map and fres-
nel shader to produce visually appealing static images
and flyby videos.

Our visualization software also grants the ability
to view errors in the level set reconstruction step by
using a signed distance function to color map error
onto vertices in the mesh. This visualization mode al-
lows archaeologists to understand which areas of the
reconstruction are likely to be most accurate.

6 RESULTS

The level set reconstruction method was applied to
three data sets, including a mushroom shaped cham-
ber (labeled “The Mush-room”) from a large water
gallery in Valletta, Malta, a complete water system
connected by two ROV deployment entrances (la-
beled “Site 3+4”) in Tal Gruwa, Gozo, and a com-
plete two-chambered cistern (labeled “The Archives”)
in Mdina, Malta. The stereo reconstruction method
was applied to The Mush-room.

Both horizontal and vertical sonar scans were col-
lected in The Mush-room. During ROV deployment,
the ROV was flown to a resting position (noting its
heading and depth), and two 360◦ sonar scans orthog-
onal to one another (one horizontal and the other ver-
tical) were collected. For more information on the
double sonar scanning configuration see (Dobke et al.,
2013). The collection of paired horizontal and vertical
scans from each rest position were unified into an ev-
idence grid. Data for The Archives and Site 3+4 was
collected by horizontally scanning the cistern walls
at 0.2 and 0.5 meter vertical intervals, respectively
(with no vertical scans, due to hardware constraints).
In some cases, scans would be duplicated and trans-
lated to a different depth in the evidence grid due to
vertical symmetry in the walls of the cistern. This is
demonstrated in the three planes of horizontal scans
making up the lower channel in The Mush-room’s ev-
idence grid, and in some sonar scans present in Site
3+4. Note however, that these are all true 3D data
sets, not just an extruded single horizontal layer as
in (Forrester et al., 2013). The evidence grids for
these three sites were processed into meshes and vi-
sualized (Fig. 6).

The level set technique described in Sec. 3 worked
well in most situations, but caused ceilings to cave in
in regions where gaps existed in the data. For exam-
ple, the roof caved in on the Site 3+4 mesh due to a
lack of data in a circular central chamber. While these
dimples were a source of error for data sets consist-
ing of horizontal sonar scans, they were not present in
models where vertical sonar scans were included in
the evidence, such as The Mush-room. The vertical
scanning capability was added mid-way through our
data acquisition process and will be used on all future
missions.

Stereo images captured in The Mush-room were
processed into disparity maps and used to trim the
volume before resurfacing. Due to the poor qual-
ity of the GoPro Hero2 lenses and ROV lights, as
well as the cloudiness of the water and plainness of
features, it was extremely difficult to produce high-
quality disparity maps. Several methods, including
prepackaged frameworks such as OpenCV and MAT-
LAB’s Computer Vision Toolbox, as well as three
custom algorithms from stereo literature (Zitnick and
Kanade, 2000) (Scharstein and Szeliski, 1998) (Nal-
pantidis and Gasteratos, 2010) were utilized in at-
tempts to make good disparity maps. However, the
distortions from the hardware as well as the plain-
ness of the walls limited successful identification and
matching of salient features. The disparity maps pro-
duced from MATLAB’s Computer Vision Toolbox
were the cleanest and had the most matched features,



Figure 5: To trim the volume in accordance with stereo image data, point clouds are manually aligned near existing zero-
crossings (the orange to white boundary), which are viewed as the surface of a mesh from the user’s perspective. When the
user is ready for raycasting, the volume is subdivided to provide finer resolution. Rays are then cast from the projector through
points in the point cloud, marking voxels that lie beyond the intersected points and setting their occupancies greater than zero.
Rays are terminated upon contact with a voxel whose occupancy is already greater than zero. Finally, the newly introduced
zero-crossings allow surfacing algorithms to more accurately reconstruct the surface.

so they were used. To demonstrate the results of
our algorithm, disparity maps were hand-modified,
cleaned, and mirrored in some situations. The ini-
tial stereo reconstruction results were not given to ar-
chaeologists for study due to their variation from true
geometry data, but are presented here as a proof of
concept.

Two distinct features in The Mush-room, an arch-
way and a large bump, were selected to add to the vol-
ume. The archway disparity map was mirrored to cap-
ture the entire feature, and both features were trimmed
from the volume. Even in the presence of poor dispar-
ity maps, medium sized features were reintroduced
successfully (Fig. 7). In addition, for water systems
with fine rock structure, stereo disparity maps can also
be used to add fine details (Fig. 8).

7 CONCLUSIONS

This work has presented a process pipeline that
addresses the problem of reconstructing geometric
models from 3D sonar scans of underwater settings
with a micro-ROV. Surface reconstructions of un-
derwater settings inaccessible to humans were pro-
duced for archaeological study using a small number
of sonar scans taken with a low-payload micro-ROV.
In addition, the work has demonstrated a method of
affixing depth data captured in low cost stereo cam-
eras to enhance rough sonar generated reconstruc-
tions. Previous work has successfully created 2D and
extruded 2.5D models of closed underwater systems,
while the work here presents an initial success for a
unified solution for surface reconstruction from 3D
sonar scans with stereo image enhancements. We are
able to successfully build representational surface re-

constructions given sparse 3D sonar data and able to
integrate locally higher resolution stereo data to add
geometric details when possible.

Three large sonar data sets were reconstructed to
test the proposed pipeline’s ability to handle sparse
3D sonar data. Two of the three data sets contained
only horizontal scans taken incrementally along the
depth of the site, and one data set was collected us-
ing both a vertical and horizontal sonar on the ROV.
All three of the reconstructed models are visually ap-
pealing, representative of true data, scaled according
to ground truth data, and useful for archaeological
study. The process of producing accurate disparity
maps from left and right images proved difficult un-
derwater, hampering the virtues of the second phase
of the pipeline, however, initial results have validated
the potential to incorporate higher resolution stereo
image data with the coarse resolution sonar data.

Several stages of the pipeline could be improved
in future work. An octree could be substituted for the
volume data structure in order to prevent memory lim-
itations when subdividing voxels, replacing marching
cubes with a dual contouring method (Ju et al., 2002)
to prevent cracks. Projectors could be automatically
aligned in the volume using visual SLAM, or could
have their positions determined before runtime using
a localization device on the ROV such as an IMU or
a SmartTether. With regards to stereo hardware, the
proposed stereo algorithm would greatly benefit from
cameras with a wider baseline and lenses corrected
for underwater photography. Additionally, a more
uniform lighting system or structured lighting system
would be useful in illuminating the scene properly or
to provide salient features.



Figure 6: Results from applying the proposed 3D reconstruction technique to three large data sets - The Mush-room (top),
Site 3+4 (center), and The Archives (bottom). The Mush-room’s sonar data was captured in 3D by mounting a vertical sonar
head onto the ROV in addition to the horizontal sonar and collecting two scans simultaneously at each capture position. Sonar
data for The Archives and Site 3+4 were collected by scanning the cistern walls at 0.2 and 0.5 meter vertical intervals. The
first column displays the sparsely populated evidence grid input. The second column shows the reconstructed mesh overlaid
on top of the input. The third column shows the reconstructed mesh colorized according to error in distance from the input
points. The final column displays Cinema4D renders of the meshes, which are given to archaeologists studying the sites.
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