Finding Good Paths: Applications of Least Cost Caloric Path
Computations

Zoé Wood, Greg Hoffman and Mark Wazny
Computer Science Department

California Polytechnic State University
San Luis Obispo, CA 93407

Abstract

As you walk around during your daily life, you
commonly make path finding decisions based on the
world around you. For example, when you are walk-
ing in the outdoors, you take the path of least re-
sistance over a terrain. We present two applications
which demonstrate the importance of using the least
cost caloric cost path computation in two different
domain settings. Ome application uses the popular
Google Earth API to explore the use of least cost
caloric path computations to create an interactive
path-finding tool. The second tool uses least cost
caloric path computations to enhance crowd simula-
tions in the 3D modeling and rendering application,
Maya. Both applications show that considering the
cost of travel from a human centered perspective can
produce better results for computing good walking
paths for crowds and individuals.

1 Introduction

Humans have been traveling by foot for thousands
of years and the task of finding good foot-paths to
travel from point A to point B is something we all
think about. Recent work [1] [2] on computing a least
cost caloric path to help archeologists learn about an-
cient human’s travel patterns have revealed the im-
portance of using a human centered path computation
instead of the traditional distance metrics. We con-
tinue this work in two individual application projects.
One, which builds a plug-in for the popular computer
modeling program, Maya, allows for the creation of
crowd path computations that consider the terrain as
one factor in agent path computations. The second
application builds on the popular Google Earth API
to provide a tool for users to compute the least cost
caloric path from a starting point to an ending point.
Both of these projects show the importance of find-
ing 'good paths’ by including a human centered cost
metric, namely caloric expense, in their computations.

1.1 The Google Earth Application - Indi-
vidual Path Finding

Mapping software has been used in combination
with GPS units and on personal computers to find the
most efficient path between a starting and an ending
point for about ten years now. Most of these imple-
mentations have calculated the most efficient routes
for automobiles on city streets and highways in terms
of time. In addition, some have been able to calcu-
late routes along trails for hikers to follow. However,
one possibility that has been largely overlooked for
personal-use route planning has been that of calculat-
ing the most energetically efficient freeform path for
a human to walk. This type of path calculation al-
lows people to plan out the least tiring path from one
point to another without worrying about pre-existent
paths, trails or roads. This information could be useful
in such applications as planning out accessible paths
for individuals with disabilities, an individual planning
out his or her path in a freeform race or even in arche-
ology, to model the movement of ancient people since
they would tend to choose the most energetically effi-
cient path in their travels.

The goal of this project was to design and im-
plement an application using the Google Earth API.
Given the latitude and longitude of a starting and end-
ing point, the application finds the most energetically
efficient path between them for walking. This requires
taking into account the effects of slope on the energy
required for humans to walk, along with issues with
the curvature of Earth. When finished with the com-
putation, the application displays the path overlaid on
the Google Earth user interface. Development on this
application was done in C# using Visual Studio 2008
and the Google Earth COM API, both of which had
their strengths and their shortcomings.

Assuming that we can represent any terrain that
we would like to traverse as a bidirectional connected
graph (see Figure 2), we can use popular shortest
path algorithms to find shortest paths across the ter-
rain, such as Dijkstras shortest path algorithm [3]. Of

Figure 1: [Path Finding |The yellow line indicates the
shortest path, assuming that the cost of travel is in
calories.

course, the question becomes, what is the cost of travel
across a given terrain. Traditional metrics such as Eu-
clidean distance do not capture the human desire to
not climb large mountains. Previous work [1] [2], has
shown that the use of the caloric cost equation is the
appropriate metric to consider human travel, i.e. walk-
ing. The caloric cost equation is used in kinesiology
to find the amount of calories used to travel at a given
speed by a given person up or down a given slope. This
equation defines the power usage of traveling downhill
as MR and the power usage of traveling uphill as M in
the set of equations:

MRyphin = M (1)

MRiownhin =M —C (2)

I\ 2
M = 1.5w+2.0 (w +1) <E) +n (w + 1) (1.50% 4 0.35vg)

3)

C:n<g(w3;l)v_ (w—i—l)u()g+6)2+25_02>

(4)

Where:

MR | is the metabolic rate in watts

w is the person’s weight in kilograms
1 is the load carried in kilograms

v is the velocity in meters per second
g is the percent grade

n is the terrain factor

Terrain factors are:

3 4

Figure 2: [Graph] An example of one grid of the bi-
directional graph used in both applications.

1.0 Black Top Road / Treadmill
1.1 Dirt Road
1.2 Light Brush
1.5 Heavy Brush
1.8 Swampy Bog
2.1 Loose Sand
1.340.082*D | Snow, where
D = depression depth in cm

However, to calculate the actual amount of calo-
ries used, the number calculated by this equation is
multiplied by the amount of distance between the two
points since power does not take into account how long
the person must travel and, with a constant speed,
the distance travelled is a good approximation of the
time it will take. The distance also had to be calcu-
lated from the starting and ending latitude and longi-
tude since Google Earth only gives latitude and lon-
gitude rather than direct distance values. A cartesian
distance was computed by multiplying the circumfer-
ence of Earth by the change in degrees divided by 360
for latitudinal distance and by multiplying it by the
change in degrees times the cosine of the latitude for
longitudinal distance. The reason for the cosine of the
latitude is that the earths circumference changes ac-
cording to the latitude ranging along a cosine curve
from its maximum at the equator to zero at the poles.

Once this cost is set as the weights for the edges,
the application finds the shortest path in terms of
caloric cost; in other words: the most energetically
efficient path. In addition to Dijkstra’s shortest path
algorithm, there are various methods to approximate
shortest paths, for example A* informed search. We
implemented this search metric to try to speed up the
path computation time. To do this, the existing Dijk-
stras algorithm was modified to also factor in the cost
from the current nodes to the end point (by adding the
caloric cost of traveling the FEuclidean distance from
each node directly to the endpoint) This algorithm

Figure 3: [Path Finding using Dijkstra’s] The yellow
line indicates the shortest path computed using Di-
jkstra’s shortest path algorithm from (35.138866666,
-120.56311111) to (35.131772222, -120.51175555).

eliminates many more potential paths earlier in the
search.

1.1.1 Google Earth Application Results

This application successfully uses either Dijkstras
shortest path algorithm or the A* informed search al-
gorithm to find the most energetically efficient path
between two points on Earth. All testing has shown
that it does so fairly accurately and, in the case of A*,
in a reasonable amount of time. Some problems were
encountered, which hinder the application. Namely, a
major limitation was in the Google Earth COM API.
While this API provided many of the functions needed
for this project, it was difficult to get altitudes (needed
to compute slope and caloric cost) in an efficient
way. The API provides the method GetPointOnTer-
rainFromScreenCoords([in] double screen_z,[in] double
screen_y) which returns the latitude, longitude, and
altitude of that point encapsulated in an IPointOn-
TerrainGE object. It does not, however, provide any
means with which to request this information for more
than one point at a time. Even with caching the alti-
tudes of previously visited points, these point by point
queries were very slow.

In terms of results, the below tables demon-
strate that A* was always significantly faster, partially
caused by the previously mentioned limitation of the
Google Earth COM API which causes a massive slow-
down when Dijkstras shortest path algorithm checks
over two-thousand locations. The testing proved that
A* is far and away more efficient than Dijkstras for
this scenario. Also, while Dijkstras proved to produce
paths that were more energetically efficient, the dif-
ference was very slight between the two algorithms.
The reasons why the two algorithms provided differ-

Figure 4: [Path Finding using A*|The yellow line indi-
cates the shortest path computed using A* path find-
ing algorithm from (35.138866666, -120.56311111) to
(35.131772222, -120.51175555).

ent paths is likely because A* attempts to go towards
the end point, causing it to produce more direct paths,
even though they may be slightly less efficient in terms
of calories. See Figures 3 and 4 for a comparison of
the two different paths created using the two different
search algorithms on the same data set. In summary,
this application shows the utility of including a human
centered cost in the creation of paths.

The following tables give the search times for spe-
cific latitude and longitude start and stop positions on
100x100 resolution Grids:

Test 1 (35.298133, -120.655797)
to (35.300775, -120.661711)
Dijkstras | 4.482 seconds

nodes 4371 tested locations
A* 0.174 seconds
nodes 184 tested locations

summary | A* 25.759 times as fast
tests less than 1/23 the nodes

Test 2 (35.138866666, -120.56311111))
to (35.131772222, -120.51175555)

Dijkstras | 43 minutes 24.612 seconds
nodes 5129 tested location

A* 0.155 seconds

nodes 132 tested locations
summary | A* 16,803.948 times as fast

tests less than 1/38 the nodes

Figure 5: [Following the Terrain] The agents correctly
follow the terrain instead of walking straight across
the terrain and over the hills, a very unnatural human
path.

Test 2 (35.160444444, -120.5307027777)
to (35.131772222, -120.51175555)
Dijkstras | 1.622 seconds

nodes 1756 tested locations
A* 0.113 seconds
nodes 127 tested locations

summary | A* 14.354 times as fast
tests less than 1/13 the nodes

1.2 The Maya plugin - Agent and Crowd
Path Finding

As you walk around during your daily life, you
commonly make path finding decisions based on the
world around you: when you are driving on the free-
way you avoid lanes compacted with traffic and when
you are walking in the outdoors, you take the path
of least resistance over a terrain. These examples,
while second nature to us, are not something that a
computational path algorithm may consider. When
simulating a large number of realistic computer gener-
ated characters, they should model this same behavior.
Commonly, a simulated computer generated character
is referred to as an agent and a grouping of agents is
referred to as a crowd. There are many applications
of agent simulations. They are often employed within
the film and game industry [5] because it is more cost
effective to let a computer control the movement of
hundreds of characters instead of letting an animator
animate each one by hand.

Behavioral solutions have been developed to solve
basic agent interaction problems. Simple behaviors
can be set up to cause agents to seek towards positions
or to avoid other agents around them. Behavioral so-
lutions, however, only get you so far. Once you start
working with more complex environments other issues

develop. If you are, for example, trying to realistically
navigate a hilly environment, the agents would have
no idea about human strengths and weaknesses. The
agent would have no idea that walking up and over
a hill takes just as much if not more energy as walk-
ing around it. Thus, we present an implementation of
agent path finding where the surrounding terrain can
be taken into account and the actual traversal cost
calculated. More complex path finding issues also oc-
cur in regard to group dynamics. For example, when
you are driving down a freeway or a city street you
tend to follow the path of least resistance. If one lane
is clogged with traffic, you switch to another lane in
order to avoid that traffic. In much the same way,
agents need to account for congestion for more realis-
tic traversal of terrain. If the route an agent is trav-
eling has other agents in front of it that are causing a
slowdown, it should seek alternative routes.

This project implements a plug-in for Maya that
simulates agent path finding over a terrain. The
project also uses an influence map for advanced path
planning. The application of this project is geared to-
wards the film and visual effects industry. For this
reason, the simulation is biased towards accurate re-
sults at the expense of speed.

1.2.1 Terrain Navigation

When you see a hill in front of you and you need to get
to the other side, it is not cost effective to simply walk
over the hill. If the hill is high enough, you can use far
less energy by walking around. Thus, we implemented
the plug-in to create a path finding solution that would
take into account the energy needed to traverse a ter-
rain. The terrain can be created directly from the 3D
program, with the terrain representation used for colli-
sion detection as well as to build the graph. The graph,
like the previous application, is a bidirectional graph
(see Figure 2). Both nodes and edges can have some
sort of weight associated with them. For this simula-
tion the weight on each node represented the density
of agents, or the agents influence in the surrounding
area, and the weight on the edges represented the cost
of traveling along that edge. Edges are weighted us-
ing the same caloric cost to traverse that edge as the
previous application (see Equation 3).

In order to find a path between two points
through the graph, Dijkstra algorithm was used. Dijk-
stras algorithm finds the least cost path between two
points. Dijkstra’s is not as efficient as A* in finding
a path, however for this application we decided that
the approximations introduced by A* did not warrant
the speed increase. Since the agent computations are
typically done offline and not intended to be real-time,
we took the time to use the more accurate Dijkstra’s

shortest path finding algorithm.

A unique aspect of this application is determin-
ing the agents location with respect to the graph data
structure. Using a linear search technique would re-
quire comparing the agents position with that of ev-
ery node in the graph. With a graph of thousands
of nodes, this takes excessive amounts of time. As a
result, a data structure called a KdTree is used to mit-
igate this. A KdTree is a way of spatially organizing
information which is optimized for nearest neighbor
searches. KdTrees function by parsing space in N di-
mensions, in this case it uses a 3 dimensional tree,
cycling between x, y, and z. At each node, the branch
on the left is all nodes that are less than the current
nodes value for the given dimension. Conversely, all
nodes in the right branch are greater in the current
nodes dimension. Searches take place by comparing
the search position with the current node of the tree.

As shown in Figure 5, the agents correctly follow
the natural valleys in the terrain instead of walking
straight over the hills, which would be a very unnatural
human path.

1.2.2 Agent Avoidance

Another concern with agent path finding is that the
agents themselves can become obstacles. In a static
situation, with unmoving agents, agents should choose
paths around those obstacles. This, however, is not the
case for a behavioral path finding solution. In a behav-
ioral solution, the agent would run into the agents in
front of it and attempt to push them aside or, the agent
would stop because it recognized agents in front of it
and become stuck. The implemented solution added
extra information to the graph used for the terrain
navigation. This, in effect, layered an influence map
on top of the graph. An influence map is commonly
used in Al to keep track of the influence an agent or
group of agents has over an area [6]. By doing this it
keeps all the information for an agent to navigate an
environment in one place. It also allows us to leverage
the existing algorithms. Every frame, each agent’s in-
fluence is calculated and added into each node in the
graph. The influence is calculated by propagating a
constant value across the nodes an agent is close to.
Half this value is then propagated to any surround-
ing nodes. When Dijkstra’s algorithm is running, any
node it passes through has this extra influence value
added in to the total cost. An option for the agents
to not take into account the influence map when cal-
culating paths is provided as well.

In order to provide a more realistic simulation
of agents picking paths through an environment you
need to allow agents to reevaluates their current path
based on new information. The first approach tried

was to have agents revaluate their pathing decisions
every frame. This, however, proved to be problem-
atic. It would force agents to scatter whenever they
were grouped up due to the influence of the surround-
ing agents on the graph. Also, calculating pathing
every frame resulted in very slow runtimes. While a
number of different approaches were tried, the imple-
mentation that was the most successful was when an
agents reevaluates their pathing only when they were
actually impeded. As an agent reached a point along
its path it would calculate the approximate time it will
take to get to the next point. If the time it takes to
travel to that next point is longer than that calculated
value, plus some constant to allow for a small amount
of error, then the agent reevaluates its path.

As shown in Figure 6, you can see a group of
agents breaking off from the main group and traveling
along a different path to avoid the bottleneck between
the two hills. This mimics a more natural way of mov-
ing about an environment. Two variables control the
likelihood of agents breaking off from the main path.
The first is the constant value that accounts for error.
The lower that is, the more likely the agents will recal-
culate their paths. The other factor for forcing agents
to actually choose another path when they reevaluate
is the influence amount each agent adds to the graph.
Larger values will allow agents to choose successfully
longer paths. This can be seen in Figure 7. The over-
head path that the highlighted agent group is following
is a significant detour from the primary path. By mak-
ing the influence agents add to the graph much higher
you are able to force them to take longer paths.

1.2.3 Maya plugin Results

The simulation itself worked correctly. It would find
paths for any number of agents across the terrain. By
controlling the amount of influence each agent added
to the influence map and the tolerance they had for be-
ing delayed, you could easily control the path agents
took. They could find their way around any type of
terrain no matter the shape or size in a way that made
sense. Although different terrains did require tweak-
ing the variables of an agent’s influence and the error
term in the estimated path computation. There were,
however, two implementation limitations. For one, the
way in which the agents follow a path is very basic.
As a result, there would be times they get off the path
and circle around a little until they can find their way
back on. This movement was very easy to spot and
looked very unnatural. Also, there were issues in re-
gards to the physics simulation used to control agent
movements. When agents went down a terrain slope
the simple physics model used in this implementation
resulted in a stepped type motion, instead of smoothly

Figure 6: [Going around the hill] The agents are cor-
rectly breaking off and going around the hill instead
of being trapped in the bottleneck of the gap between
the hills.

Figure 7: [Re-routing]The agents are correctly break-
ing off and traversing over a ’bridge’ because the lower
path is blocked by too many other agents.

moving down a hill. This is in part because of the very
basic way physics is implemented in this simulator and
could be improved in future implementations.

2 Summary

Both of these applications show the importance
and utility of including a more human centered path
computation in applications which try to find good
paths. The first application presents an interactive ap-
plication built using the Google Earth API that allows
the user to select a starting and ending point. The ap-
plication demonstrates that using the caloric cost met-
ric in conjunction with the A* algorithm for path find-
ing , computes paths efficiently which can be displayed
overlaid on the popular Google Earth user interface.
A* was the path computation of choice for this appli-
cation, since interactivity was one of the goal of the
project. The second application, built as a plugin for

Maya, shows that agent simulations can incorporate a
human centered path computation to create more re-
alistic behavior over varying terrain. This application
uses the caloric cost metric as the edge weights for Di-
jkstra’s shortest path algorithm in order to find paths
for agents that conform well to the given terrain. In
this setting the more accurate paths computed using
Dijkstra’s were used.

References

[1] B. Wood and Z. Wood, ”Energetically optimal
travel across terrain: visualizations and a new met-
ric of geographic distance with anthropological ap-
plications,” SPIE Visualization and Data Analysis
2006.

[2] Andrew Tsui and Z. Wood, ”Energetic Path Find-
ing Across Massive Terrain Data,” Proceedings of
1SVC, 2009.

[3] Edsger W. Dijkstra, ”A note on two problems
in connexion with graphs”, Numerische Mathe-
matik,1959.

[4] Jason Rickwald, ”Continuous Energetically Op-
timal Paths across Large Digital Elevation Data
Sets”, Cal Poly Master’s Thesis.

[5] http://www.massivesoftware.com/

[6] Tan Millington, ” Artificial Intelligence for Games”,
United States of America: Morgan Kaufmann.

[7] Mat Buckland, ”Programming Game Al by Exam-
ple”, United States of America: Wordware Pub-
lishing Inc.

[8] Rick Parent, ”Computer Animation Algorithms
and Techniques”, United States of America: Mor-
gan Kaufmann

[9] Joseph Knapik, ” Physiological, Biomechanical and
Medical Aspects of Soldier Load Carriage”, RTO
MP-056

