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Abstract

We introduce a way of simulating the creation of 
simple Origami (paper folding).  The Origami is created 
in a thin shell simulation that realistically models the 
behavior and physical properties of paper.  We
demonstrate how to fold and crease the simulated paper 
wherever the user desires.  This work employs cutting-
edge advances in the field of discrete shell modeling to 
meet the challenge of simulating Origami.  We found that 
the discrete shell model is capable of creating simple 
Origami that does not involve paper to paper collisions.  
For more advanced origami, however, some kind of 
collision detection and resolution scheme is required.  
Further research is necessary to implement collision 
handling while maintaining a practical simulation speed.

1. INTRODUCTION

Origami, the ancient Japanese art of folding 
paper to represent real objects, has been practiced as both 
an art form and as a form of entertainment.  In order to 
create the desired representation, one must make precise 
folds on a square sheet of paper.  Origami is usually 
fashioned using only folds; the use of cutting or gluing is 
frowned upon.  One would not normally consider origami 
and computer science to be related, yet a fascinating topic 
emerges when the two subjects unite.

In computer science, the computational 
simulation of real world objects attempts to model the 
behavior of the object.  It does this by utilizing math and 
physics to predict how the object would act under the 
same circumstances in real life.  This alone will produce 
results in the form of raw data, but presenting the 
simulation as a graphical application will better engage 
the user.  Simulating origami graphically by taking input 
and displaying its results is an intriguing fusion of these 
concepts.

The paper used for origami is an example of 
what in computer science is called a thin shell.  Thin 
shells are defined as “thin flexible structures with a high 
ratio of width to thickness” [1]. Until recently, many thin 
shell simulations in graphics could only represent a mesh 
formed of plates that resists change from a flat 
configuration.  Recent breakthroughs in thin shell 
modeling now allow shells to resist deviation from a 
curved, undeformed state.  This allows the modeled paper 
to behave more like real paper, as folds can be modeled as 

local changes to the rest curvature of the paper.  
Additional benefits include being able to form origami 
from curled paper and causing the simulation of folded 
paper to realistically react to external forces.  These 
developments make a fast, unscripted origami simulation 
possible.

1.1 Contribution

Using the discrete shell model as a foundation, 
we present an interface for creating origami.  The 
interface manipulates the mesh used by the discrete shell 
model to create creases and folds in the simulated paper.  
This folding involves changing the connectivity of the 
mesh, as well as its properties.  The paper simulation is a 
product of cutting-edge advances in the field of discrete 
shell modeling, whereas the creation of origami folds is a 
novel effort (further details on the paper simulation can be 
found in the next section).  The mesh in the simulation is 
a two-dimensional triangular structure that can be moved, 
rotated, and changed using the mouse.  The mesh changes 
to reflect the results as the simulation progresses.  While 
the simulation does not progress in real time, folds 
applied to the paper are not scripted in advance; rather 
they are executed upon request as the application runs.  
This work represents a practical use for the discrete shell 
model.  Figure 1 demonstrates the possibilities of origami 
simulation.

Figure 1: A curved piece of Origami paper that has been 
folded

1.2 Foundation and Related Work

Here we briefly overview the physical modeling 
concepts and some recent related work that represents the 
foundation of the Origami simulation.  We will cover 
particle systems, cloth simulation, recent advances in 
cloth simulation [2], and the discrete shell model that is 
simulating the Origami. 



1.3 Particle Systems

Particle systems are a way of modeling 
something composed of many elements without having to
focus on the behavior of each individual element.  
Common examples of this include models of fireworks, 
sparks, or a school of fish [3].  This is done by giving the 
elements initial conditions, then applying forces to the 
system, such as gravity and drag.  The forces can be those
found in the laws of physics, or they can be behavioral
forces, such as a fish being attracted to the center of the 
school but repelled by nearby fish.  The simulation is
broken up into time steps in which new positions and 
velocities are found in each step, using the old positions, 
velocities, and forces.  Classic particle systems use 
Euler’s method of integration to solve for the new 
properties of each particle [4].  Euler’s method as it is 
applied to particle systems is shown in Figure 2 below.

Figure 2: Euler’s method used to find new positions and 
velocities for particles

1.4 Classic Cloth Simulation

A cloth simulation is a particle system that 
attempts to physically model cloth [5].  The cloth is 
represented as a triangle mesh, in which the vertices serve
as the particles of the system.  Each vertex has a mass 
associated with it, as well as springs that connect the 
vertex to nearby vertices.  The underlying spring system 
gives the mesh cloth-like properties.  Like the particle 
systems that it is based on, classic cloth uses Euler’s 
method to make its time steps.  One of Euler’s method’s 
shortcomings is that when strong forces are applied, there 
is a danger of instability when the time steps being taken 
are too large.  For example, if a vertex of a rigid cloth 
model is displaced, strong forces will occur to return the 
vertex to a lower energy state.  If the next time step is too 
large, then the vertex might repeatedly overshoot the 
lower energy position, resulting in divergent and unstable 
behavior.  Stiff cloth tends to be either computationally 
expensive or unstable.

1.5 Large Steps in Cloth Simulation

Recent work by Baraff and Witkin introduces a 
cloth simulation scheme that can stably model stiff cloth 
while taking large time steps [2].  The authors abandon 
Euler’s integration method in favor of an implicit 
integration scheme shown in Figure 3.  The implicit 
method they describe solves for the new position and 
velocity. This is interesting because it uses the new 
position and velocity as input, in addition to the old
position and velocity.  This method, backwards Euler’s 

time step, is more complex than Euler’s, taking longer to 
solve during each time step, but it yields improved 
stability, which allows much larger time steps.  This 
greatly enhances the overall performance when simulating 
stiff cloth, such as clothing.  The following section on 
Discrete Shells uses this work as inspiration, but uses a 
simpler implicit integration method.
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Figure 3: Baraff and Witkin’s implicit integration scheme

1.6 Discrete Shells

In order to allow users to interactively create 
virtual origami, we need both a way to simulate the paper 
and a way to create folds.  The paper simulation is built 
upon previous work [1], whereas the creation of origami 
folds is a novel effort.

The simulation of paper is done using the 
discrete shell model created by Grinspun et. al.  [1].  In 
essence, the discrete shell model is a cloth simulator, 
modified to graphically model thin shells that have a 
curved rest state.  The discrete shell model is based upon
Baraff and Witkin’s cloth simulation, using the Newmark 
integration scheme.  The Newmark scheme is similar to 
Baraff and Witkin’s in that it is more stable than Euler’s, 
but is much more straightforward to solve.  The Newmark 
scheme is shown in Figure 4.  The beta and gamma 
constants are used to control the amount of bias between 
the old and new forces.  Gamma values above 0.5 add 
damping.
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Figure 4: Newmark integration scheme

Thin shells can be anything from soda cans, to 
hats, to sheet metal, to origami paper.  The advantage of 
modifying a cloth simulator to handle discrete shells is the 
existence of robust and reasonably fast methods of 
simulating cloth.  When a fast cloth simulation is 
combined with a discrete method for modeling the curved 
thin shells, the result is a fast and powerful model for not 
only cloth, but other thin shells as well.

Simulating a curved rest state implies that the 
material can resist changes in its angle of curvature.  For 
example, a sheet of paper that has been rolled tightly will 
tend to maintain that curvature and resist being 
straightened out or rolled tighter.  In this example, a 
simulated sheet of paper that has been creased and rolled 
has been pinned to a wall to demonstrate its resistance to 
changes from its curved and folded state.  

Membrane forces and flexure forces are 
necessary to construct shells that will attempt to keep 
their shape and curvature.  Membrane forces can be 



thought of as the shell’s resistance to stretching and 
shearing, and flexure forces as the shell’s resistance to 
bending from its rest state. The existing cloth systems 
already account for membrane forces on the thin shell, 
and Grinspun introduces a discrete way to model flexure 
forces.

Like the cloth simulation described earlier, the 
discrete shell model represents the material as a mesh of 
triangles.  To account for the flexure forces, each adjacent 
pair of triangles, or faces, has an energy that is a function 
of the angle between the faces (θe in Figure 5) and the 
angle that represents the rest state between the two faces.  
The angle that represents the rest state is known as the 
rest-angle.  The function uses the length of the edge (e in 
Figure 5) and one third of the average adjacent face height
(he in Figure 5).  The height average is used to account for 
the curvature of the material being modeled.  As the 
flexural energy changes, forces are applied to the masses 
in the faces to reflect the edge’s desire to return to the rest 
state.  This allows a curved surface to resist changes in 
curvature.
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Figure 5: An adjacent pair of faces and bending energy 
along the shared edge

1.7 Inelastic Deformation of Thin Shells

A work that expands on the Discrete Shells paper 
is “A Discrete Model for Inelastic Deformation of Thin 
Shells” [6].  This paper adds additional functionality to 
the discrete shell model by simulating how thin shells 
deform and fracture under stress.  Examples include a 
light bulb being broken, or the crushing of an aluminum 
can.  A difficulty overcome by the authors was to have 
fractures occur that are not limited to pre-existing edges.  
The simulation of origami presents a similar challenge of 
allowing folds to be made away from the pre-existing 
edges of the mesh that models the paper.

1.8 Additional Related Work

There have been other recent advances in the use 
of physically based modeling techniques for the purpose 
of simulating real world effects.  Physical modeling is not 
only used for thin shell applications.  It can also be used 
to model parts of living things such as organs, muscles, 
and skin.  Mimicking the mesmerizing properties of fire is 
another fascinating application of physically based 
modeling.  Stahl et al. [7] have applied a physical model 

to the simulation of bags of particles which can be made 
to model the behavior of vital organs such as a human 
heart as it fills, stretches, and compresses.  Like the 
discrete shell model, the bag of particles is a sort of shell
that attempts to retain its shape as forces are applied to it.  

Not all physically based models use a system 
that is spring-based, or even compressible for that matter.  
Significant progress has been made in the area of 
simulating fire.  Nguyen et al. [8] produce a great looking 
flame simulation using incompressible flow equations 
applied to voxels (volume pixels).

A recent work that is very similar to discrete 
shells attempts to simulate the characteristics of the 
human hand.  Using pseudo muscles that deform in ways 
that mimic human muscles, Albrecht et al. [9] are able to 
move the bones of the hand using physical laws.  
Covering the muscles and bones is a skin model is quite 
similar to the discrete shell model.  The skin uses a mass 
and spring system to react to the changing shape of 
muscles and bone it contains.

2 IMPLEMENTATION

In this section we cover the interface presented 
to the user, and how the origami simulation works 
beneath the user interface.  The user interacts with a 3D 
model of the origami paper using the mouse.  The paper is 
shown as a mesh and as the user makes folds, the mesh 
simulates a paper’s reaction to the folds.  The results are 
displayed as the simulation progresses, and the paper’s 
behavior can be recorded for playback at a later time.  The 
Origami simulation runs in C++, using OpenGL for 
displaying the paper, along with some math modules used 
in the discrete shells work [1].

2.1 Discrete Shells

The Origami simulation is implemented using 
the discrete shell model as an underlying engine.  The 
shell model is adjusted to model the physical attributes 
and behavior of Origami paper.  This allows the user to 
modify properties of the paper in the same way that 
folding changes physical paper, while the discrete shell 
simulation attempts to react to these changes in a realistic 
fashion.  The remaining sections of this chapter cover the 
major additions and modifications made to the discrete 
shell model to make virtual Origami possible.

2.2 Edge Making

The Origami simulation should support folds 
from any pair of vertices that the user specifies.  The fold 
will be made along a straight line between two points 
according to where they would be if the paper were still 
flat.  Since the paper can only be changed along the edges 
of the mesh, if the desired fold does not lie along existing 
edges, new edges must be created.  These new edges will 



be created as if the paper is lying flat, and will be 
transformed to where they belong in the paper’s current 
state.

One must first find the line along which the fold 
is to be made.  Then, new edges along the line must be 
created.  After each new edge is made, another edge must
be added to ensure that all faces are triangles.

The first task in creating a fold is to find an 
equation for the line that intersects the vertices selected 
for the beginning and the end of the fold.  The 
representation of the vertices used are the two 
dimensional coordinates from when the mesh was still a 
flat piece of paper.  An example of a possible current 
configuration of the paper and its original flat orientation 
are shown in Figure 6.

Figure 6: Relationship between the path of a new fold and 
the original mesh

Using the original two dimensional coordinates 
greatly simplifies mapping the line to the mesh and 
determining where new edges must be made.  If the 
current location of the vertices and the mesh were used, 
then the line would have to be projected onto the mesh 
faces to determine where new edges should lie.  This 
would make the simulation less user-friendly, as one 
would have a very difficult time making the straight folds 
that origami requires.

The main disadvantage of mapping the folds 
onto the original flat paper is that it must be possible to 
flatten the paper into two dimensions.  This constrains the 
origami simulation to initially flat paper, as opposed to 
other possibilities that the virtual domain makes possible.  
Someday we might desire virtual origami constructed 
from a hollow sphere of paper instead of a sheet.  Such an 
undertaking would certainly be a radical move.  However, 
for the purposes of this work, we feel that requiring our 
paper to begin flat is a good compromise for now.

After finding the fold-line, we then make new 
edges in the mesh which follow the fold line.  Starting 
from the first vertex, we split faces as we proceed toward 
the final vertex.  Each face has an edge opposite the 
current vertex that could be split to create a new edge 
from the current vertex to some point on the opposite 
edge.  The equation of a line along the opposite edge is 
found and used to find an intersection (see Figure 7).  As 
mentioned earlier, we use the flat coordinates of the edge.  
If the intersection occurs inside the boundaries of the 
edge, the edge will be split, creating a new edge along the 
desired path of the fold.  The new vertex created will 

become the current vertex, and the process will repeat 
until the final vertex is reached.  The results of this 
process are shown in Figure 8.  Sometimes, the fold 
specified by the user will happen along existing edges.  
When this is the case, instead of creating a new edge, the 
existing edge will be traversed and the loop will continue 
with the vertex on the other side of the existing edge.  
Another complicating situation is when the opposite edge 
is to be split near an existing vertex.  In this case the 
existing vertex is simply shifted to where the new vertex 
should be.

Figure 7: Applying the fold line to a face to determine 
where to add a new edge
Figure 8: A new fold is created and additional edges are 

formed as a side effect

In Figure 8 there are many other new edges 
besides those along the new fold. These are added to 
repair faces adjacent to a face that has been split in two to 
create an edge.  In the mesh system used by the discrete 
shells model, all faces must be only three-sided.  Having a 
vertex in the middle of an edge makes the edge become 
two edges, one on either side of the vertex.  After a face is 
split by a new edge, the adjacent face will find itself with 
four edges.  This condition is shown in Figure 9.  In order 
to address this, when a face is split in two, the face that 
shares the split edge will split itself as well in order to 
preserve the mesh.  This remedy is demonstrated in 
Figure 10. This is done during the fold-making process 
immediately after any edge is split.

     
Figure 9: A newly created edge has accidentally formed a 
four-sided face
Figure 10: Another edge is created to split the four-sided 
face into two triangles

2.3 Reference Angle Modification

As the Discrete Shells simulation runs, it uses a 
variable called phisRef, stored in a face, that holds a 
function of the rest-angle to each neighboring face.  A 
primitive way to create folds would be to immediately 
change phisRef to the new desired angle.  This does not 



work well, as it would be akin to a real sheet of paper, 
initially flat, suddenly informed that it should be at rest 
folded in half.  Early experiments demonstrated that when 
the thin shell model attempts to simulate this, it most 
often results in violent, unnatural oscillations.  In this 
case, either the oscillations last until the damping 
eventually removes them, or the model simply blows up.

In order to eliminate this problem, the folds are 
made gradually.  When a fold is made, the face records 
the current rest-angle, the desired angle, and the current 
simulation time.  During each step of simulation, the 
phisRef values for each edge on each face are changed 
linearly to the new rest angle with respect to time.  
Making folds gradually and not making sudden changes 
to the rest state of the mesh improves results.

The angle of the fold is not used directly in the 
discrete flexural energy formula.  Instead, the angle is 
plugged into an equation using a tangent function (Figure 
11) in order to intensify the forces as the angle approaches
180 degrees.  This is done to compensate for the lack of 
collision detection in the simulation.  For this reason, 
when a tight fold is needed, it is better to fold at an angle 
no greater than 170 degrees, to prevent the forces from 
becoming too dramatic.

 2 * tan 1 / 2 *refAngleUsed refAngle
Figure 11: Reference angle function to compensate for 
lack of collision detection

2.4 Vertex Constraint

In order to allow the user to hold the paper in 
place while folding it, vertices can be constrained.  This 
means that the vertex will no longer be able to move and 
react, and its immobility will affect the way the rest of the 
mesh behaves.  This is done by setting the velocity of the 
vertex to zero, thus locking its current position.  The 
discrete shells simulation handles this by assigning the 
constrained vertices very large values for mass. Doing so 
causes the rest of the mesh to behave in a manner taking 
the stationary parts into account.  The simulation can then 
progress toward equilibrium with those vertices remaining 
in their current position.

2.5 Adding a New Vertex

In order to allow folds to be started and finished 
from any point along an edge, the user should be able to 
create new vertices along an edge.  As mentioned in the 
User Interface section, the user simply selects an edge 
with the mouse, and a new vertex is created at the location 
of the cursor as shown in Figure 13.  In order to do this, 
we need to know which edge the user selects, and at what 
point along the edge the mouse cursor lies when the 
selection is made.  The discrete shells simulator uses 
openGL picking code to determine which edge the user 
wishes to manipulate.  To determine the location of the 

mouse at the time the edge is clicked, we need to calculate 
the coordinates of the mouse click in the same coordinate 
system as the endpoints of the edge.  This is done using 
the openGL function call gluUnProject which translates
2D pixel coordinates to 3D world coordinates.  Feeding 
the function the current transforms and the pixel 
coordinates of the click yields the world coordinate 
position of the click.  The world coordinates of the mouse 
are compared to the world coordinates of the edge’s 
endpoints, allowing the edge to be properly split in two.  
When the face is split, the new vertex is created.  Finally, 
to ensure the integrity of the triangular mesh, the 
neighboring faces must have an edge added to prevent 
four-sided faces from forming as in Figure 9.

3 USER INTERFACE

When creating virtual origami on a computer, 
there are some basic operations the user will wish to have 
available.  The user will want to be able to view the paper 
from any angle, create folds in the paper, and prevent 
parts of the paper from moving.  These three abilities are 
integral to the folding of origami in both reality and 
virtual reality.  The interface allows the user to perform 
these actions, as well as start and stop the simulation to 
watch the folds form.

In order to watch from any direction, the user 
can rotate the paper with the left mouse button on a 
virtual trackball, and zoom in and out using the middle 
mouse button.  To choose pieces of the mesh for folding 
along and making other changes to the mesh, the user can 
employ the right mouse button.  It selects vertices, edges, 
and faces using OpenGL’s picking functions.

The user can create folds by selecting two 
separate vertices of the mesh.  When the second vertex is 
selected, a pop-up window is displayed that requests the 
angle of the desired fold in degrees (see Figure 12).  For 
valley folds, a positive angle is given, and for mountain 
folds, a negative angle is given.  In the case of valley 
folds, either side of the fold moves toward the camera, 
whereas the sides of a mountain fold move away from the 
camera.  These definitions refer to the initial camera and 
object positions.  To make the fold, the user enters the 
desired angle and selects the OK button with the mouse.  
This causes the paper to fold along the line between the 
vertices.  The angle at which the paper is inclined to rest 
along a crease is called the rest-angle.  The rest angle 
along the fold does not change to the specified angle 
immediately; instead the rest angle between the faces on 
either side of the fold will gradually change, to minimize 
the potential energy in the paper.  More information about 
rest angles can be found in the Reference Angle 
Modification section.



  
Figure 12: The interface for creating paper folds

Although folds can only be made from vertex to 
vertex, the user might wish to create an endpoint for a 
fold where currently a vertex does not exist.  In this case, 
the user can create new vertices at an arbitrary point on an 
edge.  This is done by selecting the edge at the location 
where a new vertex is desired.  The edge will split, 
creating a new vertex and new edges as shown in Figure 
13.  Details on new vertex creation can be found in the 
section entitled “Adding a New Vertex” in this chapter.  
The additional edges formed after the split are an 
intentional side effect, to prevent four-sided faces from 
forming on either side of the selected edge.  The problems 
of having a four-sided face are covered in the Edge 
Making section and are illustrated in Figure 9 and Figure 
10.  With the new vertex or vertices in place, the fold can 
be made as described earlier.  

Figure 13: Creation of a new vertex in the paper mesh  
Figure 14: Folding diagram of the Origami dog

When the user would like to prevent part of the 
paper from moving, vertices can be fixed in their current 
position.  This can be done by selecting the same vertex 
twice, with the right mouse button.  This causes the vertex 
to change color, indicating that it will no longer move, 
and the rest of the paper will act as if that particular point 
is immobile.  Additional details on holding vertices in 
place can be found in the Vertex Constraint section of this 
chapter.

As discussed above, the origami simulation 
effort mainly concerns tuning the discrete shells 
simulation to make it accept folds gracefully, and finding 
ways to convert the user’s will into corresponding actions 
in the simulation.  Creating new edges along new fold 
lines requires careful consideration of the coordinate 
systems of the paper, the folded paper, and the user’s 
window.  These changes also mandate special attention to 

the connectivity of the mesh and how it must be modified 
to suit the user’s desire.  Now that the inner workings 
have been covered, we are free to move on to the fruit of 
these efforts.

4 RESULTS

The first piece of origami that comes to mind is 
the famous origami crane.  The crane, however, while 
simple for the origami master is quite difficult to model 
due to the necessity of creating multiple folds on top of 
each other.  These multiple folds require collision 
detection and resolution.  Handling paper collisions would 
entail additional computational complexity that would 
slow down the simulation.  Instead, we tested our origami 
simulation on more feasible origami.  This origami
involves less than five folds and attempts to capture the 
spirit and shape of the objects with as little detail as 
possible.  This is similar to drawing techniques in which 
the artist draws as few lines as possible in order to allow 
the viewer’s imagination to fill in the rest.  The simple 
origami figures created are not original, but were inspired 
by the examples found at Jean-Jerome Casalonga’s 
website [10].

Our first example of simple origami is the dog.  
The dog is created in five folds and features a double fold 
in the tail, where two layers of paper are folded in the 
same way.  It also features an inverse reverse fold in the 
head.  An inverse reverse fold is a fold in which a person 
folds a paper in half, spreads the corner, and folds the tip 
of the corner toward the space between the two sides of 
the crease.  The inverse reverse fold is used in making the 
head of the famous paper crane.  Figure 14 above shows 
the folds needed to make the simple origami dog.  In the 
diagram, folds of 170 degrees are shown by yellow lines, 
while folds of -170 degrees are shown by blue lines.

The dog looks quite nice during the simulation 
compared to one folded in real life (see Figure 15).  What 
cannot be shown in the illustrations is how the animation 
of the folding of the dog, when displayed, seems to give 
the dog much more life.  If the dog is folded for someone 
with real paper, they may not recognize the dog 
immediately. If a video of the simulated folding is shown 
instead, the viewer has an easier time identifying the dog.  
In lieu of a video, a slide show of the dog being folded is 
shown in Figure 16.

Figure 15: A simulated Origami dog and a paper Origami 
dog



Figure 16: Slide show demonstrating the dog being folded

A second example is the elephant.  The elephant 
has a fairly basic design, consisting of two vertical folds 
to form the head and trunk, and two diagonal folds in the 
pieces that are not being used for the trunk.  These 
diagonal folds create the broad elephant ears.  These folds 
are shown in Figure 17.

Figure 17: Folding diagram of the Origami elephant
  

The simulated elephant, along with a real paper 
elephant is shown in Figure 18.  It matches the real life 
results of the same folding algorithm very well.  Like the 
dog, the ears flap a bit as they come to rest at the desired 
angles during the simulation.  This gives the elephant an 
energy that folding paper by hand does not quite have.

Figure 18: A simulated Origami elephant and a paper 
Origami elephant

The last example presented is the apple.  The 
apple at first glance appears simple, but is actually quite 
complicated regarding the behavior of the paper.  The 
apple mainly consists of a mountain fold and a valley fold 
with a small angle between them.  This causes the paper 
to warp into a concave bowl shape.  This three-
dimensional effect is what makes the origami apple 
unusual.  Finally, two of the corners on the apple are 
folded away to make the apple’s perimeter appear curved.  
Although apples are convex in real life, the origami apple 
is deliberately made concave.  The folding diagram of the 
apple is shown below in Figure 19.

Figure 19: Folding diagram of the Origami Apple

This example is where the thin shell model 
proves itself.  The simulated paper greatly resembles the 
behavior of real paper as the fold is made to create the 
stem.  Just as in real life, the paper reacts to the fold by 
becoming concave.  The two apples, simulated and real, 
are shown in Figure 20.

Figure 20: A simulated Origami apple and a paper 
Origami apple

The teaser image shown in Figure 1 is not an 
example of real Origami, but is made using the same 
Origami creation interface as the rest of the results.  In 
this case slight folds are made across the sheet to create a 
curled effect, and then the corners are dog-eared.  This is 
the result of testing to ensure that curled effects can be 
made as well.

5 CONCLUSION

Whenever one tries to simulate computationally 
what humans or nature can do easily, many problems 
arise.  This is true whether in the field of artificial 
intelligence, communications protocol, simulated car 



crashes, voice recognition, computer vision, or simply 
translating requirements into software.   The innate 
limitations of computers and machines are repeatedly 
underestimated by humans.  An example of this is the 
results of the 2004 DARPA autonomous vehicle rally.  Of 
all the entrants, the most successful only made it a small 
fraction of the distance required to complete the race, 
failing a task that most humans can complete while half 
asleep.

Similarly, attempting to simulate origami proved 
to be deceptively challenging.  The attempts to create 
dense folds highlighted the lack of collision detection, and 
folds close to 180 degrees produced overly large forces.  
Leveraging from existing work also had some inherent 
difficulties.  A large existing code base required tough 
decisions between reusing and rewriting code.  While 
testing the simulation, correct behavior was difficult to 
conclusively determine, as incorrect behavior is either 
hard to detect, or easy to detect but hard to understand.

We were not able to eclipse the great origami 
masters with a giant three-dimensional paper dragon, nor 
even make a modest paper crane.  We were, however, 
able to make a great-looking little origami dog out of five 
folds, and other such simple origami.  We allow the user 
to specify folds and desired fold angles across the paper, 
as well as hold pieces of the paper in place.  With this 
module plugged into an efficient thin shells simulation, 
we were able to create our simple origami in a matter of 
minutes.

5.1 Future Work

Future work in creating origami will need to 
address the challenge of simulating the great number of 
paper-on-paper collisions that occur within densely folded 
paper, such as in the paper crane.  Baraff and Witkin 
survey some of the best ways to implement collision 
resolution.  Detecting collisions is fairly simple; testing 
for masses passing through faces, and edges passing 
through other edges is straightforward.  The difficulty lies 
in resolving the collisions once they have been detected.  
One approach is to apply a strong force to separate the 
colliding cloth.  This is effective at resolving the collision, 
but the use of a strong force requires a smaller step size, 
slowing the simulation, thus making it impractical.  An 
alternative technique is to simply displace the cloth to 
prevent the collision.  This proves to be an even worse 
solution, as this introduces violent reactionary forces by 
the underlying spring system.  The reactionary forces 
mandate a small step size, which slows the simulation [2].

Baraff and Witkin have worked around these 
issues, and use a combination of these techniques in their 
simulation.  When preventing collisions they apply a 
strong damped force, which they claim is usually not 
severe enough to ruin the step size.  They solve the 
displacement problem by modifying their backward Euler 
equations to prepare the neighbors for the collision that is 

coming, preventing a violent reaction [2].  The inability to 
simulate dense folds is one of the weaker points of this 
work, and implementing Baraff and Witkin’s modified 
differential equation and collision resolution scheme 
would greatly increase the creative potential of the 
origami simulation.

Further complicating the desire for collision 
resolution is the speed of the simulation. Currently, the 
discrete flexural energy of an edge is based in part upon 
the heights of the adjacent triangles.  Creating folds often 
leaves triangle slivers, which can result in strong forces 
and small step size.  This could be remedied by either 
flipping the triangles to improve their aspect ratio, or 
eliminating the triangle height component entirely.  The 
height component is intended to estimate the curvature of 
the fold, which, in the case of paper, is either zero or 
infinite, so it could safely be ignored.
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