
Discrete Shells Origami

Rob Burgoon
Graduate student
Computer Science

Calif. Polytechnic State Univ.
San Luis Obispo

Zoë J. Wood
Assistant Professor
Computer Science

Calif. Polytechnic State Univ.
San Luis Obispo

Eitan Grinspun
Assistant Professor
Computer Science

Columbia University

Abstract

We introduce a way of simulating the creation of
simple Origami (paper folding). The Origami is created
in a thin shell simulation that realistically models the
behavior and physical properties of paper. We
demonstrate how to fold and crease the simulated paper
wherever the user desires. This work employs cutting-
edge advances in the field of discrete shell modeling to
meet the challenge of simulating Origami. We found that
the discrete shell model is capable of creating simple
Origami that does not involve paper to paper collisions.
For more advanced origami, however, some kind of
collision detection and resolution scheme is required.
Further research is necessary to implement collision
handling while maintaining a practical simulation speed.

1. INTRODUCTION

Origami, the ancient Japanese art of folding
paper to represent real objects, has been practiced as both
an art form and as a form of entertainment. In order to
create the desired representation, one must make precise
folds on a square sheet of paper. Origami is usually
fashioned using only folds; the use of cutting or gluing is
frowned upon. One would not normally consider origami
and computer science to be related, yet a fascinating topic
emerges when the two subjects unite.

In computer science, the computational
simulation of real world objects attempts to model the
behavior of the object. It does this by utilizing math and
physics to predict how the object would act under the
same circumstances in real life. This alone will produce
results in the form of raw data, but presenting the
simulation as a graphical application will better engage
the user. Simulating origami graphically by taking input
and displaying its results is an intriguing fusion of these
concepts.

The paper used for origami is an example of
what in computer science is called a thin shell. Thin
shells are defined as “thin flexible structures with a high
ratio of width to thickness” [1]. Until recently, many thin
shell simulations in graphics could only represent a mesh
formed of plates that resists change from a flat
configuration. Recent breakthroughs in thin shell
modeling now allow shells to resist deviation from a
curved, undeformed state. This allows the modeled paper
to behave more like real paper, as folds can be modeled as

local changes to the rest curvature of the paper.
Additional benefits include being able to form origami
from curled paper and causing the simulation of folded
paper to realistically react to external forces. These
developments make a fast, unscripted origami simulation
possible.

1.1 Contribution

Using the discrete shell model as a foundation,
we present an interface for creating origami. The
interface manipulates the mesh used by the discrete shell
model to create creases and folds in the simulated paper.
This folding involves changing the connectivity of the
mesh, as well as its properties. The paper simulation is a
product of cutting-edge advances in the field of discrete
shell modeling, whereas the creation of origami folds is a
novel effort (further details on the paper simulation can be
found in the next section). The mesh in the simulation is
a two-dimensional triangular structure that can be moved,
rotated, and changed using the mouse. The mesh changes
to reflect the results as the simulation progresses. While
the simulation does not progress in real time, folds
applied to the paper are not scripted in advance; rather
they are executed upon request as the application runs.
This work represents a practical use for the discrete shell
model. Figure 1 demonstrates the possibilities of origami
simulation.

Figure 1: A curved piece of Origami paper that has been
folded

1.2 Foundation and Related Work

Here we briefly overview the physical modeling
concepts and some recent related work that represents the
foundation of the Origami simulation. We will cover
particle systems, cloth simulation, recent advances in
cloth simulation [2], and the discrete shell model that is
simulating the Origami.

1.3 Particle Systems

Particle systems are a way of modeling
something composed of many elements without having to
focus on the behavior of each individual element.
Common examples of this include models of fireworks,
sparks, or a school of fish [3]. This is done by giving the
elements initial conditions, then applying forces to the
system, such as gravity and drag. The forces can be those
found in the laws of physics, or they can be behavioral
forces, such as a fish being attracted to the center of the
school but repelled by nearby fish. The simulation is
broken up into time steps in which new positions and
velocities are found in each step, using the old positions,
velocities, and forces. Classic particle systems use
Euler’s method of integration to solve for the new
properties of each particle [4]. Euler’s method as it is
applied to particle systems is shown in Figure 2 below.

Figure 2: Euler’s method used to find new positions and
velocities for particles

1.4 Classic Cloth Simulation

A cloth simulation is a particle system that
attempts to physically model cloth [5]. The cloth is
represented as a triangle mesh, in which the vertices serve
as the particles of the system. Each vertex has a mass
associated with it, as well as springs that connect the
vertex to nearby vertices. The underlying spring system
gives the mesh cloth-like properties. Like the particle
systems that it is based on, classic cloth uses Euler’s
method to make its time steps. One of Euler’s method’s
shortcomings is that when strong forces are applied, there
is a danger of instability when the time steps being taken
are too large. For example, if a vertex of a rigid cloth
model is displaced, strong forces will occur to return the
vertex to a lower energy state. If the next time step is too
large, then the vertex might repeatedly overshoot the
lower energy position, resulting in divergent and unstable
behavior. Stiff cloth tends to be either computationally
expensive or unstable.

1.5 Large Steps in Cloth Simulation

Recent work by Baraff and Witkin introduces a
cloth simulation scheme that can stably model stiff cloth
while taking large time steps [2]. The authors abandon
Euler’s integration method in favor of an implicit
integration scheme shown in Figure 3. The implicit
method they describe solves for the new position and
velocity. This is interesting because it uses the new
position and velocity as input, in addition to the old
position and velocity. This method, backwards Euler’s

time step, is more complex than Euler’s, taking longer to
solve during each time step, but it yields improved
stability, which allows much larger time steps. This
greatly enhances the overall performance when simulating
stiff cloth, such as clothing. The following section on
Discrete Shells uses this work as inspiration, but uses a
simpler implicit integration method.
























 vvxxfM

vv
h

v

x

00
1

0

,(
Figure 3: Baraff and Witkin’s implicit integration scheme

1.6 Discrete Shells

In order to allow users to interactively create
virtual origami, we need both a way to simulate the paper
and a way to create folds. The paper simulation is built
upon previous work [1], whereas the creation of origami
folds is a novel effort.

The simulation of paper is done using the
discrete shell model created by Grinspun et. al. [1]. In
essence, the discrete shell model is a cloth simulator,
modified to graphically model thin shells that have a
curved rest state. The discrete shell model is based upon
Baraff and Witkin’s cloth simulation, using the Newmark
integration scheme. The Newmark scheme is similar to
Baraff and Witkin’s in that it is more stable than Euler’s,
but is much more straightforward to solve. The Newmark
scheme is shown in Figure 4. The beta and gamma
constants are used to control the amount of bias between
the old and new forces. Gamma values above 0.5 add
damping.

  
  11

1
2

1

1

2/1








iiiii

iiiiii

aatvv

aatvtxx




Figure 4: Newmark integration scheme

Thin shells can be anything from soda cans, to
hats, to sheet metal, to origami paper. The advantage of
modifying a cloth simulator to handle discrete shells is the
existence of robust and reasonably fast methods of
simulating cloth. When a fast cloth simulation is
combined with a discrete method for modeling the curved
thin shells, the result is a fast and powerful model for not
only cloth, but other thin shells as well.

Simulating a curved rest state implies that the
material can resist changes in its angle of curvature. For
example, a sheet of paper that has been rolled tightly will
tend to maintain that curvature and resist being
straightened out or rolled tighter. In this example, a
simulated sheet of paper that has been creased and rolled
has been pinned to a wall to demonstrate its resistance to
changes from its curved and folded state.

Membrane forces and flexure forces are
necessary to construct shells that will attempt to keep
their shape and curvature. Membrane forces can be

thought of as the shell’s resistance to stretching and
shearing, and flexure forces as the shell’s resistance to
bending from its rest state. The existing cloth systems
already account for membrane forces on the thin shell,
and Grinspun introduces a discrete way to model flexure
forces.

Like the cloth simulation described earlier, the
discrete shell model represents the material as a mesh of
triangles. To account for the flexure forces, each adjacent
pair of triangles, or faces, has an energy that is a function
of the angle between the faces (θe in Figure 5) and the
angle that represents the rest state between the two faces.
The angle that represents the rest state is known as the
rest-angle. The function uses the length of the edge (e in
Figure 5) and one third of the average adjacent face height
(he in Figure 5). The height average is used to account for
the curvature of the material being modeled. As the
flexural energy changes, forces are applied to the masses
in the faces to reflect the edge’s desire to return to the rest
state. This allows a curved surface to resist changes in
curvature.

  e

e

eeB hexW /||||)(
2

  

Figure 5: An adjacent pair of faces and bending energy
along the shared edge

1.7 Inelastic Deformation of Thin Shells

A work that expands on the Discrete Shells paper
is “A Discrete Model for Inelastic Deformation of Thin
Shells” [6]. This paper adds additional functionality to
the discrete shell model by simulating how thin shells
deform and fracture under stress. Examples include a
light bulb being broken, or the crushing of an aluminum
can. A difficulty overcome by the authors was to have
fractures occur that are not limited to pre-existing edges.
The simulation of origami presents a similar challenge of
allowing folds to be made away from the pre-existing
edges of the mesh that models the paper.

1.8 Additional Related Work

There have been other recent advances in the use
of physically based modeling techniques for the purpose
of simulating real world effects. Physical modeling is not
only used for thin shell applications. It can also be used
to model parts of living things such as organs, muscles,
and skin. Mimicking the mesmerizing properties of fire is
another fascinating application of physically based
modeling. Stahl et al. [7] have applied a physical model

to the simulation of bags of particles which can be made
to model the behavior of vital organs such as a human
heart as it fills, stretches, and compresses. Like the
discrete shell model, the bag of particles is a sort of shell
that attempts to retain its shape as forces are applied to it.

Not all physically based models use a system
that is spring-based, or even compressible for that matter.
Significant progress has been made in the area of
simulating fire. Nguyen et al. [8] produce a great looking
flame simulation using incompressible flow equations
applied to voxels (volume pixels).

A recent work that is very similar to discrete
shells attempts to simulate the characteristics of the
human hand. Using pseudo muscles that deform in ways
that mimic human muscles, Albrecht et al. [9] are able to
move the bones of the hand using physical laws.
Covering the muscles and bones is a skin model is quite
similar to the discrete shell model. The skin uses a mass
and spring system to react to the changing shape of
muscles and bone it contains.

2 IMPLEMENTATION

In this section we cover the interface presented
to the user, and how the origami simulation works
beneath the user interface. The user interacts with a 3D
model of the origami paper using the mouse. The paper is
shown as a mesh and as the user makes folds, the mesh
simulates a paper’s reaction to the folds. The results are
displayed as the simulation progresses, and the paper’s
behavior can be recorded for playback at a later time. The
Origami simulation runs in C++, using OpenGL for
displaying the paper, along with some math modules used
in the discrete shells work [1].

2.1 Discrete Shells

The Origami simulation is implemented using
the discrete shell model as an underlying engine. The
shell model is adjusted to model the physical attributes
and behavior of Origami paper. This allows the user to
modify properties of the paper in the same way that
folding changes physical paper, while the discrete shell
simulation attempts to react to these changes in a realistic
fashion. The remaining sections of this chapter cover the
major additions and modifications made to the discrete
shell model to make virtual Origami possible.

2.2 Edge Making

The Origami simulation should support folds
from any pair of vertices that the user specifies. The fold
will be made along a straight line between two points
according to where they would be if the paper were still
flat. Since the paper can only be changed along the edges
of the mesh, if the desired fold does not lie along existing
edges, new edges must be created. These new edges will

be created as if the paper is lying flat, and will be
transformed to where they belong in the paper’s current
state.

One must first find the line along which the fold
is to be made. Then, new edges along the line must be
created. After each new edge is made, another edge must
be added to ensure that all faces are triangles.

The first task in creating a fold is to find an
equation for the line that intersects the vertices selected
for the beginning and the end of the fold. The
representation of the vertices used are the two
dimensional coordinates from when the mesh was still a
flat piece of paper. An example of a possible current
configuration of the paper and its original flat orientation
are shown in Figure 6.

Figure 6: Relationship between the path of a new fold and
the original mesh

Using the original two dimensional coordinates
greatly simplifies mapping the line to the mesh and
determining where new edges must be made. If the
current location of the vertices and the mesh were used,
then the line would have to be projected onto the mesh
faces to determine where new edges should lie. This
would make the simulation less user-friendly, as one
would have a very difficult time making the straight folds
that origami requires.

The main disadvantage of mapping the folds
onto the original flat paper is that it must be possible to
flatten the paper into two dimensions. This constrains the
origami simulation to initially flat paper, as opposed to
other possibilities that the virtual domain makes possible.
Someday we might desire virtual origami constructed
from a hollow sphere of paper instead of a sheet. Such an
undertaking would certainly be a radical move. However,
for the purposes of this work, we feel that requiring our
paper to begin flat is a good compromise for now.

After finding the fold-line, we then make new
edges in the mesh which follow the fold line. Starting
from the first vertex, we split faces as we proceed toward
the final vertex. Each face has an edge opposite the
current vertex that could be split to create a new edge
from the current vertex to some point on the opposite
edge. The equation of a line along the opposite edge is
found and used to find an intersection (see Figure 7). As
mentioned earlier, we use the flat coordinates of the edge.
If the intersection occurs inside the boundaries of the
edge, the edge will be split, creating a new edge along the
desired path of the fold. The new vertex created will

become the current vertex, and the process will repeat
until the final vertex is reached. The results of this
process are shown in Figure 8. Sometimes, the fold
specified by the user will happen along existing edges.
When this is the case, instead of creating a new edge, the
existing edge will be traversed and the loop will continue
with the vertex on the other side of the existing edge.
Another complicating situation is when the opposite edge
is to be split near an existing vertex. In this case the
existing vertex is simply shifted to where the new vertex
should be.

Figure 7: Applying the fold line to a face to determine
where to add a new edge
Figure 8: A new fold is created and additional edges are

formed as a side effect

In Figure 8 there are many other new edges
besides those along the new fold. These are added to
repair faces adjacent to a face that has been split in two to
create an edge. In the mesh system used by the discrete
shells model, all faces must be only three-sided. Having a
vertex in the middle of an edge makes the edge become
two edges, one on either side of the vertex. After a face is
split by a new edge, the adjacent face will find itself with
four edges. This condition is shown in Figure 9. In order
to address this, when a face is split in two, the face that
shares the split edge will split itself as well in order to
preserve the mesh. This remedy is demonstrated in
Figure 10. This is done during the fold-making process
immediately after any edge is split.

Figure 9: A newly created edge has accidentally formed a
four-sided face
Figure 10: Another edge is created to split the four-sided
face into two triangles

2.3 Reference Angle Modification

As the Discrete Shells simulation runs, it uses a
variable called phisRef, stored in a face, that holds a
function of the rest-angle to each neighboring face. A
primitive way to create folds would be to immediately
change phisRef to the new desired angle. This does not

work well, as it would be akin to a real sheet of paper,
initially flat, suddenly informed that it should be at rest
folded in half. Early experiments demonstrated that when
the thin shell model attempts to simulate this, it most
often results in violent, unnatural oscillations. In this
case, either the oscillations last until the damping
eventually removes them, or the model simply blows up.

In order to eliminate this problem, the folds are
made gradually. When a fold is made, the face records
the current rest-angle, the desired angle, and the current
simulation time. During each step of simulation, the
phisRef values for each edge on each face are changed
linearly to the new rest angle with respect to time.
Making folds gradually and not making sudden changes
to the rest state of the mesh improves results.

The angle of the fold is not used directly in the
discrete flexural energy formula. Instead, the angle is
plugged into an equation using a tangent function (Figure
11) in order to intensify the forces as the angle approaches
180 degrees. This is done to compensate for the lack of
collision detection in the simulation. For this reason,
when a tight fold is needed, it is better to fold at an angle
no greater than 170 degrees, to prevent the forces from
becoming too dramatic.

 2 * tan 1 / 2 *refAngleUsed refAngle
Figure 11: Reference angle function to compensate for
lack of collision detection

2.4 Vertex Constraint

In order to allow the user to hold the paper in
place while folding it, vertices can be constrained. This
means that the vertex will no longer be able to move and
react, and its immobility will affect the way the rest of the
mesh behaves. This is done by setting the velocity of the
vertex to zero, thus locking its current position. The
discrete shells simulation handles this by assigning the
constrained vertices very large values for mass. Doing so
causes the rest of the mesh to behave in a manner taking
the stationary parts into account. The simulation can then
progress toward equilibrium with those vertices remaining
in their current position.

2.5 Adding a New Vertex

In order to allow folds to be started and finished
from any point along an edge, the user should be able to
create new vertices along an edge. As mentioned in the
User Interface section, the user simply selects an edge
with the mouse, and a new vertex is created at the location
of the cursor as shown in Figure 13. In order to do this,
we need to know which edge the user selects, and at what
point along the edge the mouse cursor lies when the
selection is made. The discrete shells simulator uses
openGL picking code to determine which edge the user
wishes to manipulate. To determine the location of the

mouse at the time the edge is clicked, we need to calculate
the coordinates of the mouse click in the same coordinate
system as the endpoints of the edge. This is done using
the openGL function call gluUnProject which translates
2D pixel coordinates to 3D world coordinates. Feeding
the function the current transforms and the pixel
coordinates of the click yields the world coordinate
position of the click. The world coordinates of the mouse
are compared to the world coordinates of the edge’s
endpoints, allowing the edge to be properly split in two.
When the face is split, the new vertex is created. Finally,
to ensure the integrity of the triangular mesh, the
neighboring faces must have an edge added to prevent
four-sided faces from forming as in Figure 9.

3 USER INTERFACE

When creating virtual origami on a computer,
there are some basic operations the user will wish to have
available. The user will want to be able to view the paper
from any angle, create folds in the paper, and prevent
parts of the paper from moving. These three abilities are
integral to the folding of origami in both reality and
virtual reality. The interface allows the user to perform
these actions, as well as start and stop the simulation to
watch the folds form.

In order to watch from any direction, the user
can rotate the paper with the left mouse button on a
virtual trackball, and zoom in and out using the middle
mouse button. To choose pieces of the mesh for folding
along and making other changes to the mesh, the user can
employ the right mouse button. It selects vertices, edges,
and faces using OpenGL’s picking functions.

The user can create folds by selecting two
separate vertices of the mesh. When the second vertex is
selected, a pop-up window is displayed that requests the
angle of the desired fold in degrees (see Figure 12). For
valley folds, a positive angle is given, and for mountain
folds, a negative angle is given. In the case of valley
folds, either side of the fold moves toward the camera,
whereas the sides of a mountain fold move away from the
camera. These definitions refer to the initial camera and
object positions. To make the fold, the user enters the
desired angle and selects the OK button with the mouse.
This causes the paper to fold along the line between the
vertices. The angle at which the paper is inclined to rest
along a crease is called the rest-angle. The rest angle
along the fold does not change to the specified angle
immediately; instead the rest angle between the faces on
either side of the fold will gradually change, to minimize
the potential energy in the paper. More information about
rest angles can be found in the Reference Angle
Modification section.

Figure 12: The interface for creating paper folds

Although folds can only be made from vertex to
vertex, the user might wish to create an endpoint for a
fold where currently a vertex does not exist. In this case,
the user can create new vertices at an arbitrary point on an
edge. This is done by selecting the edge at the location
where a new vertex is desired. The edge will split,
creating a new vertex and new edges as shown in Figure
13. Details on new vertex creation can be found in the
section entitled “Adding a New Vertex” in this chapter.
The additional edges formed after the split are an
intentional side effect, to prevent four-sided faces from
forming on either side of the selected edge. The problems
of having a four-sided face are covered in the Edge
Making section and are illustrated in Figure 9 and Figure
10. With the new vertex or vertices in place, the fold can
be made as described earlier.

Figure 13: Creation of a new vertex in the paper mesh
Figure 14: Folding diagram of the Origami dog

When the user would like to prevent part of the
paper from moving, vertices can be fixed in their current
position. This can be done by selecting the same vertex
twice, with the right mouse button. This causes the vertex
to change color, indicating that it will no longer move,
and the rest of the paper will act as if that particular point
is immobile. Additional details on holding vertices in
place can be found in the Vertex Constraint section of this
chapter.

As discussed above, the origami simulation
effort mainly concerns tuning the discrete shells
simulation to make it accept folds gracefully, and finding
ways to convert the user’s will into corresponding actions
in the simulation. Creating new edges along new fold
lines requires careful consideration of the coordinate
systems of the paper, the folded paper, and the user’s
window. These changes also mandate special attention to

the connectivity of the mesh and how it must be modified
to suit the user’s desire. Now that the inner workings
have been covered, we are free to move on to the fruit of
these efforts.

4 RESULTS

The first piece of origami that comes to mind is
the famous origami crane. The crane, however, while
simple for the origami master is quite difficult to model
due to the necessity of creating multiple folds on top of
each other. These multiple folds require collision
detection and resolution. Handling paper collisions would
entail additional computational complexity that would
slow down the simulation. Instead, we tested our origami
simulation on more feasible origami. This origami
involves less than five folds and attempts to capture the
spirit and shape of the objects with as little detail as
possible. This is similar to drawing techniques in which
the artist draws as few lines as possible in order to allow
the viewer’s imagination to fill in the rest. The simple
origami figures created are not original, but were inspired
by the examples found at Jean-Jerome Casalonga’s
website [10].

Our first example of simple origami is the dog.
The dog is created in five folds and features a double fold
in the tail, where two layers of paper are folded in the
same way. It also features an inverse reverse fold in the
head. An inverse reverse fold is a fold in which a person
folds a paper in half, spreads the corner, and folds the tip
of the corner toward the space between the two sides of
the crease. The inverse reverse fold is used in making the
head of the famous paper crane. Figure 14 above shows
the folds needed to make the simple origami dog. In the
diagram, folds of 170 degrees are shown by yellow lines,
while folds of -170 degrees are shown by blue lines.

The dog looks quite nice during the simulation
compared to one folded in real life (see Figure 15). What
cannot be shown in the illustrations is how the animation
of the folding of the dog, when displayed, seems to give
the dog much more life. If the dog is folded for someone
with real paper, they may not recognize the dog
immediately. If a video of the simulated folding is shown
instead, the viewer has an easier time identifying the dog.
In lieu of a video, a slide show of the dog being folded is
shown in Figure 16.

Figure 15: A simulated Origami dog and a paper Origami
dog

Figure 16: Slide show demonstrating the dog being folded

A second example is the elephant. The elephant
has a fairly basic design, consisting of two vertical folds
to form the head and trunk, and two diagonal folds in the
pieces that are not being used for the trunk. These
diagonal folds create the broad elephant ears. These folds
are shown in Figure 17.

Figure 17: Folding diagram of the Origami elephant

The simulated elephant, along with a real paper
elephant is shown in Figure 18. It matches the real life
results of the same folding algorithm very well. Like the
dog, the ears flap a bit as they come to rest at the desired
angles during the simulation. This gives the elephant an
energy that folding paper by hand does not quite have.

Figure 18: A simulated Origami elephant and a paper
Origami elephant

The last example presented is the apple. The
apple at first glance appears simple, but is actually quite
complicated regarding the behavior of the paper. The
apple mainly consists of a mountain fold and a valley fold
with a small angle between them. This causes the paper
to warp into a concave bowl shape. This three-
dimensional effect is what makes the origami apple
unusual. Finally, two of the corners on the apple are
folded away to make the apple’s perimeter appear curved.
Although apples are convex in real life, the origami apple
is deliberately made concave. The folding diagram of the
apple is shown below in Figure 19.

Figure 19: Folding diagram of the Origami Apple

This example is where the thin shell model
proves itself. The simulated paper greatly resembles the
behavior of real paper as the fold is made to create the
stem. Just as in real life, the paper reacts to the fold by
becoming concave. The two apples, simulated and real,
are shown in Figure 20.

Figure 20: A simulated Origami apple and a paper
Origami apple

The teaser image shown in Figure 1 is not an
example of real Origami, but is made using the same
Origami creation interface as the rest of the results. In
this case slight folds are made across the sheet to create a
curled effect, and then the corners are dog-eared. This is
the result of testing to ensure that curled effects can be
made as well.

5 CONCLUSION

Whenever one tries to simulate computationally
what humans or nature can do easily, many problems
arise. This is true whether in the field of artificial
intelligence, communications protocol, simulated car

crashes, voice recognition, computer vision, or simply
translating requirements into software. The innate
limitations of computers and machines are repeatedly
underestimated by humans. An example of this is the
results of the 2004 DARPA autonomous vehicle rally. Of
all the entrants, the most successful only made it a small
fraction of the distance required to complete the race,
failing a task that most humans can complete while half
asleep.

Similarly, attempting to simulate origami proved
to be deceptively challenging. The attempts to create
dense folds highlighted the lack of collision detection, and
folds close to 180 degrees produced overly large forces.
Leveraging from existing work also had some inherent
difficulties. A large existing code base required tough
decisions between reusing and rewriting code. While
testing the simulation, correct behavior was difficult to
conclusively determine, as incorrect behavior is either
hard to detect, or easy to detect but hard to understand.

We were not able to eclipse the great origami
masters with a giant three-dimensional paper dragon, nor
even make a modest paper crane. We were, however,
able to make a great-looking little origami dog out of five
folds, and other such simple origami. We allow the user
to specify folds and desired fold angles across the paper,
as well as hold pieces of the paper in place. With this
module plugged into an efficient thin shells simulation,
we were able to create our simple origami in a matter of
minutes.

5.1 Future Work

Future work in creating origami will need to
address the challenge of simulating the great number of
paper-on-paper collisions that occur within densely folded
paper, such as in the paper crane. Baraff and Witkin
survey some of the best ways to implement collision
resolution. Detecting collisions is fairly simple; testing
for masses passing through faces, and edges passing
through other edges is straightforward. The difficulty lies
in resolving the collisions once they have been detected.
One approach is to apply a strong force to separate the
colliding cloth. This is effective at resolving the collision,
but the use of a strong force requires a smaller step size,
slowing the simulation, thus making it impractical. An
alternative technique is to simply displace the cloth to
prevent the collision. This proves to be an even worse
solution, as this introduces violent reactionary forces by
the underlying spring system. The reactionary forces
mandate a small step size, which slows the simulation [2].

Baraff and Witkin have worked around these
issues, and use a combination of these techniques in their
simulation. When preventing collisions they apply a
strong damped force, which they claim is usually not
severe enough to ruin the step size. They solve the
displacement problem by modifying their backward Euler
equations to prepare the neighbors for the collision that is

coming, preventing a violent reaction [2]. The inability to
simulate dense folds is one of the weaker points of this
work, and implementing Baraff and Witkin’s modified
differential equation and collision resolution scheme
would greatly increase the creative potential of the
origami simulation.

Further complicating the desire for collision
resolution is the speed of the simulation. Currently, the
discrete flexural energy of an edge is based in part upon
the heights of the adjacent triangles. Creating folds often
leaves triangle slivers, which can result in strong forces
and small step size. This could be remedied by either
flipping the triangles to improve their aspect ratio, or
eliminating the triangle height component entirely. The
height component is intended to estimate the curvature of
the fold, which, in the case of paper, is either zero or
infinite, so it could safely be ignored.

6 REFERENCES

[1] Eitan Grinspun et al., “Discrete Shells,”
Eurographics/SIGGRAPH Symposium on
Computer Animation, (2003).

[2] Baraff and Witkin, “Large Steps in Cloth Simulation”,
Eurographics/SIGGRAPH Symposium on
Computer Animation, (2003).

[3] William T. Reeves, "Particle Systems - A Technique
for Modeling a Class of Fuzzy Objects",
Eurographics/SIGGRAPH Symposium on
Computer Animation, (1983).

[4] William H. Press et al., Numerical Recipes in C,
(1988).

[5] Breen and House, Cloth modeling and animation,
(2000).

[6] Yotam Gingold et al. “A Discrete Model for Inelastic
Deformation of Thin Shells,”
Eurographics/SIGGRAPH Symposium on
Computer Animation, (2004).

[7] D. Stahl et al., “Bag-of-particles as a deformable
model”, Proceedings of the symposium on Data
Visualisation (2002).

[8] Duc Quang Nguyen et al., “Physically Based
Modeling and Animation of Fire,”
Eurographics/SIGGRAPH Symposium on
Computer Animation, (2002).

[9] Irene Albrecht et al., “Construction and animation of
anatomically based human hand models,”
Eurographics/SIGGRAPH Symposium on
Computer Animation, (2003).

[10] Jean-Jerome Casalonga, “Simple Origami”, 18 Jan.
1999, online, available from Internet Explorer at
http://membres.lycos.fr/jjcasalo/

