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Abstract 

 

Using Hybrid Approaches to Solve the Challenges of Shape from Shading 

by 

Ryan Alan Murphy 

 

For over thirty years researchers have been trying to solve the Shape from Shading 

problem of determining 3D shape from a single image with a single light source. This 

paper shows that this problem can never be solved perfectly due to challenges of light 

orientation, camera type, ambiguity, multiple materials, and specular highlights. 

However, we can get accurate results on small, simple shapes where we can make 

assumptions to remove these challenges. This paper shows how each of these challenges 

can be overcome through the use of other techniques such as pattern matching and 

stereopsis. The paper will then present a new hybrid method of Shape from Shading that 

can be used to autonomously capture 3D information from 2D images of single objects 

with multiple peaks and multiple materials with specular components.  



 v 

 

Contents 

List of Figures ................................................................................................................... vii 

1 Introduction...................................................................................................................... 1 

1.1 Challenges with Shape from Shading ....................................................................... 4 

1.1.1 Challenge of Ambiguity..................................................................................... 5 

1.1.2 Challenge of Multiple Materials ........................................................................ 7 

1.1.3 Challenge of Specularity.................................................................................... 8 

2 Previous Work ............................................................................................................... 10 

2.1 Minimization........................................................................................................... 11 

2.2 Local ....................................................................................................................... 12 

2.3 Linearization ........................................................................................................... 12 

2.4 Propagation ............................................................................................................. 13 

2.5 Interactive Shape from Shading.............................................................................. 15 

2.6 Supporting Material for Hybrid Methods ............................................................... 17 

2.6.1 Stereopsis ............................................................................................................. 17 

2.6.2 Image Segmentation............................................................................................. 19 

3 Algorithm....................................................................................................................... 21 

3.1 Solving the Challenge of Ambiguity ...................................................................... 21 

3.2 Solving the Challenge of Multiple Materials.......................................................... 24 

3.2.1 Computing the Maximum Intensity for a Material .............................................. 26 



 vi 

3.3 Solving the Challenge of Specularity ..................................................................... 28 

3.4 Summary of Algorithm........................................................................................... 30 

4 Sample Acquisition........................................................................................................ 32 

4.1 Additional Acquisitions .......................................................................................... 35 

5 Conclusion and Future Work ......................................................................................... 38 

Bibliography ..................................................................................................................... 40 

Appendix A: Deriving a technique for SFS...................................................................... 44 

Appendix B: Proof of equivalence between Eikonal Equation and Derived Equation .... 49 

 



 vii 

 

List of Figures 

Figure 1.1 SFS Example ..................................................................................................... 1 

Figure 1.2 Phong Model ..................................................................................................... 2 

Figure 1.3 Challenge of Ambiguity Example ..................................................................... 6 

Figure 1.4 Ambiguous Surface Example ............................................................................ 7 

Figure 1.5 Challenge of Multiple Materials Example ........................................................ 8 

Figure 2.1 FM-SFS Results............................................................................................... 14 

Figure 2.2 Results from Interactive SFS........................................................................... 16 

Figure 2.3 Stereopsis Diagram.......................................................................................... 18 

Figure 3.1 Using Stereopsis to Solve the Challenge of Ambiguity .................................. 23 

Figure 3.2 Two Images with Different Intensity Ranges.................................................. 25 

Figure 3.3 Material with and without a Specular Component .......................................... 29 

Figure 3.4 Improving the Challenge of Specularity.......................................................... 29 

Figure 4.1 Stereo View of Vase........................................................................................ 32 

Figure 4.2 Constructed Surface Using FM-SFS ............................................................... 33 

Figure 4.3 Constructed Surface with Handling of Multiple Materials ............................. 34 

Figure 4.4 Identified Materials on Vase ........................................................................... 35 

Figure 4.5 Face Acquisition Example............................................................................... 36 

Figure 4.6 Real Image Acquisition Example.................................................................... 37 

Figure A.1 Phong Model Diagram.................................................................................... 45 

Figure A.2 Calculating Change in Depth.......................................................................... 46 

Figure A.3 Polar Coordinates ........................................................................................... 47 



 1 

 

Chapter 1 

Introduction 

 The Shape from Shading (SFS) problem can be described as acquiring 3D information 

about a surface from the intensity values of a single image [6]. The figure seen below is an 

example of an acquired surface using a SFS technique. 

Figure 1.1 SFS Example: Multiple views of a constructed surface from a 

single image using SFS [4]. 

Three dimensional surface acquisition has applications in the computer vision, 

archaeological, medical, and entertainment fields because it provides a way to study, interact, 

visualize, and manipulate data that cannot be matched by two dimensional images.  
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One solution is to use Laser Range scanners which provide a way to digitally scan a 3D 

model to capture the information like a 3D fax machine [19]. However these machines are 

expensive, sometimes costing several hundred thousand dollars making their availability for 

more general applications limited. They also take several hours of post processing time [19] 

making them infeasible for real time applications like computer vision. It is because of this that a 

fast, autonomous, inexpensive method for acquiring 3D information is needed [1] [4]. 

SFS has been the topic of much research for over thirty years ever since the first 

technique was proposed in the early 70's by Horn [5]. Since then, the field of SFS has branched 

into multiple directions, but the goal remained the same. The simple, cheap, fast features of SFS 

techniques make it very attractive to sectors of industry that cannot afford expensive range 

scanners [19]. 

In general, SFS techniques work by using intensity values of an image to infer 3D 

information. This is based on light models that take 3D information and produce intensity values. 

A common light model used is the Phong Model. Figure 1.2 gives a graphical depiction of how 

the Phong model works. 

 
Figure 1.2 Phong Model: Graphical depiction of the Phong Model of 

Reflection. Created by Brad Smith, August 7, 2006. 
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The Phong model separates the total intensity visible on an object into an ambient glow, diffuse 

shading, and specular highlights [27]. 

• The ambient component is a constant intensity seen on every pixel that is caused by other 

light sources, reflections off other surfaces etc. This is often safe to ignore in SFS since 

the problem involves only a single light source. 

• The diffuse component that goes into the final intensity seen in an image of a surface is 

only dependent on the angle at which the light hits the surface. It is independent of the 

viewing direction. 

• The specular component causes the bright spots on a surface. This component is seen 

when the light rays are reflected near the view direction. We experience specular 

highlights every time we are blinded by the sun’s rays after they have reflected off a 

smooth surface. 

In order to simplify the problem most SFS techniques only worry about the diffuse 

component. Surfaces that only experience diffuse light are known as lambertian reflectors [30]. 

Using this constraint the intensity value at any point is given by the simple equation seen below. 

NLI ⋅=                                  (1) 

Where I is the final intensity value, L is a 3D vector representing the direction the light is facing, 

and N is the normal at that location on the surface. Supposing we can set up a situation where the 

light direction and at least one normal is known, we can use the light direction and the intensity 

value from an image to solve for the surface normal at a point neighboring the known normal. 

We can then continue solving for neighboring normals until we have a normal for every point. 
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Then using the computed normal for a given point, we can compute the change in depth. 

Intuitively, when we experience a bright region on an image we know the surface at that location 

is flat; when the image is shaded, the surface must be sloped. Once the changes in depth are 

computed for every pixel in the image, they can be used to construct the 3D surface. (Refer to 

Section 2.4 for more information on this process.) However, techniques that acquire 3D 

information autonomously from a single 2D image are not without their challenges. 

1.1 Challenges with Shape from Shading 

 There are five major challenges that modern SFS techniques face: light orientation with 

respect to the camera, perspective versus orthographic cameras, ambiguity (whether a surface 

region is convex or concave), multi material surfaces, and specular highlights. 

Most SFS techniques simplify their input scene with the assumption that the light is at the 

optical center of a camera or apply a transformation to the problem so they can treat it as if the 

light was at the center [1]. This constraint of having the light at the optical center removes the 

need to handle shadows in an image but at the cost of having more flexible lighting conditions. 

However, due to the fact that it is common to have the light source near the optical center 

(consider a camera with a mounted flash), this assumption is acceptable. 

Abundant research has focused on perspective versus orthographic cameras [7] [28] [29]. 

An orthographic view is comparable to taking a picture with a box as a camera, while the 

perspective view is like looking through a pinhole (e.g. in an orthographic projection parallel 

lines never meet, while in perspective they will meet at a vanishing point on the horizon). Most 

SFS techniques rely on an orthographic view. The challenge with using these techniques is that 

cameras take pictures with a perspective view. This difference in view causes variations in 
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calculated depths of a surface. In most cases the distance variations caused by perspective versus 

orthographic views of a surface are ignored [8]. This assumption does limit the amount of real 

applications a SFS technique can have since cameras in the real world are perspective. However, 

the problem can be solved easily with a simple transformation if the distance from object to 

camera is known [7]. 

The two previous challenges have been addressed in previous research and their general 

assumptions are acceptable for a number of SFS techniques. Due to this fact, this paper focuses 

on solving the three open challenges of ambiguity, multiple materials, and specularity. 

1.1.1 Challenge of Ambiguity 

The challenge of ambiguity to SFS is: given a single image with a single light source, 

how can one determine if a specific section of the surface is concave or convex? Belhumeur, 

Kriegman, and Yuille prove that when the lighting direction is unknown and specular highlights 

are negligible then the same image can be obtained by a continuous family of surfaces 

(depending linearly on three parameters)[9]. A concrete example of this can be seen in Figure 

1.3, where the image could represent either a concave or convex sphere but there is no way to 

know for sure with the information provided in the scenario. 
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Figure 1.3 Challenge of Ambiguity Example: (a) An image of a hemisphere. 

(b) Slice of a surface that could produce the image in (a). (c) Slice of another 

surface that could produce the same image in (a). 

In order to remove this ambiguity we have to make, further assumptions about our scene. 

For instance, the Fast Marching SFS (FM-SFS) (Section 2.5) solution uses a downhill 

approximation that assumes the surface is concave [10]. This downhill assumption removes the 

convex versus concave ambiguity but limits the technique to only spherical objects. Later works 

by Tankus, Sochen, and Yeshurun propose a method for a global solution by assuming the 

surface varies from convex to concave sections [11]. However this is limited to a particular type 

of surface called a Morse surface [12]. Even with the alternating up hill and down hill 

assumption, for complex solutions that show up in real life there are so many possible solutions 

that methods that make such assumptions are not very useful (refer to Figure 1.4). To get around 

such SFS ambiguities more information about the surface is required. 
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Figure 1.4 Ambiguous Surface Example: Example of a more complex image 

with 512 underlying surface possibilities. 

1.1.2 Challenge of Multiple Materials 

Most SFS research has been done on surfaces with a single material, but little research 

has been done on surfaces with multiple materials. Most SFS techniques assume that the objects 

in a given scene are all lambertian reflectors [30]. That is to say they are ideal surfaces: bright 

spots giving full light intensity and dark spots having no intensity. The problem is that in reality 

surfaces are not ideal. They typically absorb some of the light and some even absorb light 

differently in different areas of the surface. A surface is not always perfectly white or at least 

consistent; sometimes it is made up of multiple types of materials or multiple colors. 
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Figure 1.5 Challenge of Multiple Materials Example: Example of a surface 

with multiple materials [30]. (a) Input image. (b) Constructed surface using 

traditional SFS techniques. (c) Correct construction of the surface. 

Traditional SFS approaches would not provide good solutions for images like the one in 

Figure 1.5. They would treat the line between the light and dark region in a surface to be a 

crease, rather than a flat region. Some research has been done to solve this problem but it is still 

in its early stages [30]. 

1.1.3 Challenge of Specularity 

The challenge of specularity is similar to the challenge of multiple materials. As stated in 

the previous section, most SFS techniques assume that a surface is perfectly lambertian. This not 

only means it is of consistent material, but this also means it has no specular component.  

Specular highlights are controlled when we constrain the problem to have the light source 

at the optical center of the camera since the bright spots that are experienced are in the same 

locations as bright regions caused by the diffuse component. This allows a SFS technique to 

ignore the specular highlights and treat the surface as lambertian. However, since SFS techniques 

use the assumption that high intensity regions correspond to flat regions, without knowing how 

strong the specular component is on a material, we often get extreme flat spots in a constructed 

surface when the actual surface is curved. 
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The rest of this paper will proceed as follows. First, we will explore previous approaches 

to SFS. We will then explore some techniques used in other methods of 3D data acquisition and 

computer vision to learn how they can be used to overcome the three open challenges of 

ambiguity, multiple materials, and specularity. Finally, we will apply the tools of other domains 

to create a new algorithm that does the following: 

1. Captures depth information from a single object using a single light source and two 

cameras. 

2. Captures depth information in real-time. 

3. Operates autonomously (i.e. with no user input). 

4. Allows for surfaces with multiple local minima and local maxima. 

5. Allows for surfaces with multiple materials. 

6. Allows for surfaces with specular components. 

This new algorithm addresses the open challenges of SFS and allows for the construction 

of accurate 3D data from a single light source with minimal additional information.
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Chapter 2 

Previous Work 

SFS was started by Berthold Horn in the early 70's with his discovery that the shape of a 

surface could be inferred from intensity information found in an image of a surface. Horn 

originally used a technique that started from one edge of an image and marched along the image 

constructing a surface based on the observed intensity values at any given point [24]. His 

approach later evolved to realize that solving for shape can be done by finding the solution of a 

nonlinear first-order Partial Differential Equation (PDE) called the brightness equation [5]. This 

equation, seen below, is known as an Eikonal equation. 

)2(1
),(

1
),(

2
−=∆

yxI
yxz

 

This equation directly relates the change in depth of a surface to its intensity values, with 

the depth represented as the magnitude of the gradient of z(x,y) and the intensity values as I(x,y). 

A brief derivation of this equation as it relates to SFS can be found in [4]. 

Since its origins with Horn, the field of SFS has branched into four different directions: 

minimization, local, linearization, and propagation. A brief description of these approaches to the 

SFS problem is given below. The inclined reader will find detailed descriptions of these 

techniques as well as some of the results from them in recent surveys [1] [13] [26].  
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2.1 Minimization 

Minimization or optimization approaches work by solving for the depth values of a 

surface by minimizing an error function. Recent surveys of minimization approaches have 

concluded that each approach encompasses a selection of energy function and minimization 

technique [13]. 

The error function is built up of many different components, called constraints, which 

allow the function to be used to describe an entire image. "The function can involve the 

brightness constraint, and other constraints, such as the smoothness constraint, the integrability 

constraint, the gradient constraint, and the normal constraint [1]." The brightness constraint 

represents the total brightness error of the acquired surface from the original image. The 

smoothness constraint ensures the final surface converges to a unique solution. The integrability 

constraint ensures that surfaces are valid, that is, the surface is one-to-one. The intensity gradient 

constraint insures that the distribution of intensities on a constructed surface stays close to the 

actual image. The unit normal constraint forces the normals on the acquired surface to be unit 

length. 

In addition to choosing an energy function, a minimization technique has to be chosen 

that solves the energy function. As in Richard Szeliski's paper, Fast SFS [21], there are two ways 

to minimize an energy function. The first is to directly minimize the energy function E. The 

second is to solve a new system of equations produced by ∆E = 0. 

Although a majority of research in SFS uses minimization techniques, the approaches are 

still quite limited in the variety of surfaces that a given method can work on [13] (e.g. surfaces 
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with multiple local minima and maxima). This has motivated some researchers to take radically 

different approaches to the problem. 

2.2 Local 

Local approaches work by assuming an underlying shape (e.g. sphere) for a region, and 

then compute the normal at each point in the region. This process is repeated until the complete 

surface is generated. These methods rely on strong assumptions about surface shape [13]. 

Generally, this assumption is that the surface is locally spherical [22]. Because of this 

assumption these solutions perform extremely well on surfaces that are spherical in nature, or 

that are part of spheres. However, they perform exceptionally bad on surfaces that do not fit their 

assumption. While these methods are efficient and easy to implement, the assumption on 

underlying shape is quite limiting. 

2.3 Linearization 

Linear approaches take the non-linear problem introduced by the Eikonal equation and 

reduce it to a linear equation through the linearization of the reflectance map. A reflectance map 

is an equation that maps normals on a surface to intensities in an image.  

),(),( qpRyxI =                      (3) 

Equation 3 gives an example of a reflectance equation where I(x, y) is the intensity at a 

given pixel location, R is the reflectance map equation where (p, q) represents the normal at the 

corresponding pixel in polar coordinates.  
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Tsai and Shah's work in 1992 [23] still remains one of the best examples of linearization 

[6]. They operate under the assumption that a surface is lambertian. The intensity values on an 

image of a lambertian surface are only dependent on the angle at which a light reflects off a 

surface and not dependent, in any way, on the position of the camera. In other words, the 

surfaces are not shiny. Tsai and Shah’s technique improves on previous work by first 

approximating the normals (p,q) from the input image, then linearizing a depth function Z(x,y) 

directly rather than linearizing a reflectance map. This linearization is performed by first using a 

Taylor series to linearly approximate a given reflectance function. This generates a linear system 

of equations which is then solved using a Jacobi iterative method [23]. Tsai and Shah's technique 

works extremely well on synthetic images. However, because of their lambertian assumption, it 

suffers from the challenge of specularity and multiple materials. It therefore, performs poorly on 

real images since they typically are not ideal lambertian reflectors. 

2.4 Propagation 

Propagation approaches work by propagating solutions from known points. Propagation 

techniques start from a single or set of known points, and then propagate outward across the 

image to form the surface using intensity information from the input image as it marches 

outward from the given point. 

The first SFS technique that was developed by Horn in 1970 was actually a propagation 

technique [24]. This first method worked by starting at one edge of a surface where the slope of 

the surface can be assumed to be at its maximum. It then linearly marching along the image 

using a change function to determine how the surface would change at each step based on the 

intensity at a given point (high intensity relates to flat region, low intensity relates to sloped 
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region). This solution worked well on some surfaces but had the disadvantage of needing to 

know the depths at the edges. This technique was later expanded upon by Oliensis when he 

observed that surface shape can be reconstructed from singular points rather than from edges or 

known curves [26]. 

 
Figure 2.1 FM-SFS Results: Results from FM-SFS with the input image on 

the left and the reconstructed surface on the right [10]. 

The most well known propagation technique was developed by Kimmel and Sethian. 

Their method, dubbed Fast Marching SFS (FM-SFS) [10], is able to achieve extremely 

promising (refer to Figure 2.1) results with complexity of O (N log N) where N is the number of 

pixels in an image [10]. The algorithm works as follows: 

1. The algorithm is initialized by adding a single point to a minimum depth sorted priority 

queue. This initial point is said to be the peak which is the highest point on the surface. 

The algorithm then loops through the remaining steps until the queue is empty. 

2. Remove the head of the queue and compute the depths of its unprocessed neighbors by 

adding the change in depth of the neighboring pixel to the depth of the head. Where the 

change in depth is computed by Equation 2. 

)2(1
),(

1
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2
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3. The newly computed neighbors are then added to the queue to be processed later. 

One disadvantage to this approach is that it works from the assumption that the surface 

we are trying to compute has only one maximum. In other words the solution has a single peak, 

and everything around that peak can be computed by using a downhill assumption. For example, 

if you had an image of a face, you would get the rounded region around the nose, but would not 

capture the local maxima at the cheeks, lips, etc. Weakness aside this method is popular because 

it efficiently provides a solution to the Eikonal equation by simply marching around an image. In 

the most recent survey to date FM-SFS gave an overall performance on both synthetic and real 

images that proved to be better than all other top SFS techniques [13]. 

2.5 Interactive Shape from Shading 

In the work Interactive SFS (Zeng, Matsushita, Quan, and Shum)[4] a new SFS technique 

is proposed that uses human knowledge to solve for concave versus convex ambiguity. Zeng and 

colleagues base their work on SFS and interactive modeling. Their method uses FM-SFS to form 

local solutions. Because FM-SFS only works for surfaces with a single maximum (or minimum) 

point it cannot be used, by itself, to form an accurate solution to a complex surface with many 

peaks (or ruts). Due to this limitation they have to first locate these maxima then compute the 

relative altitudes between the maxima and feed this information as inputs into the FM-SFS 

algorithm. 

In order to locate the maxima they rely on user input to make the problem feasible. The 

user provides a number of surface normals and the algorithm takes those normals and traces 

them back to peaks. Once the peaks are known the algorithm computes the relative altitudes of 
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each peak. The FM-SFS algorithm is then used with the initial peak altitudes as its inputs and 

produces a surface. The details of this method can be found in their paper [4]. 

One of the major areas of interest to this paper is their choice of having the user input a 

series of normals rather then indicating depths at certain points. They choose to do it this way 

because they felt it easier for a user to recognize surface orientation rather than its depth. 

However, because a user only specifies orientation at points of their choosing, the number of 

peaks is often lower then the actual number of peaks. This weakness is overcome by having the 

user look at the constructed surface, then looping back and entering in more normals to 

iteratively construct a solution that is to their satisfaction. Results of this interactive technique 

can be seen in Figure 2.2. 

Figure 2.2 Results from Interactive SFS: Results from a real world scene 

reconstruction. From left to right, the input image followed by two views of 

the constructed image 

This technique provides aesthetically pleasing results. However, this solution does not 

lead to an easy way to remove the human factor limiting its application to domains such as 

computer vision. The method presented in this thesis builds on the work of Zeng and colleagues 

by using a FM-SFS technique that allows for multiple peaks, but without user intervention. 
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2.6 Supporting Material for Hybrid Methods 

Even with the excellent performance of recent SFS techniques they still have faults based 

on false assumptions. Therefore, it is important to review other techniques used in 3D data 

acquisition and computer vision to see how they overcome the challenges that face SFS in order 

to satisfy the goals of working autonomously, providing an unambiguous solution, and being 

able to handle multiple materials including those with specular components 

The research and algorithms used in stereopsis and image segmentation can be used to 

help solve the challenges of SFS. Stereopsis allows our method to be autonomous and help 

differentiate ambiguous cases. Image segmentation allows our algorithm to handle images with 

multiple materials including those with specular components, by breaking the SFS problem into 

smaller pieces. 

2.6.1 Stereopsis  

Stereopsis, or stereo vision, is another popular approach to acquire 3D data. Stereopsis is 

modeled after the human vision system. 

Our eyes capture different 2-D images of the objects around us and our brain uses these 

images to recover a description of the 3-D structure of the environment. Stereopsis is the 

process responsible for this reconstruction of the depth [17]. 
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Figure 2.3 Stereopsis Diagram: Example of a Stereopsis setup with two 

cameras looking at the same object. 

Depth can likewise be solved for computationally. Given two images of the same object 

from two different viewpoints you can compute the depth of the object can be computed by 

knowing the distance and angle between the cameras and the distance between the same points in 

an image. In stereopsis, depth is directly calculated by triangulation of two corresponding points 

in two images taken by different cameras under different light conditions. 

Two cameras which capture the same scene have a common field of view. A point in the 

scene inside the common field of view is projected on the images of the two cameras. Due 

to the different points of view of the cameras, the coordinates of this point in the two 

images are different. The different coordinates are described in a horizontal and a 

vertical shift, called the disparities. Disparities can be relative to the coordinates of the 

image point of the first camera and of the second camera [16]. 
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The main challenge of stereopsis is that it is difficult to find the correspondence of image 

points within the shared field of view between the two cameras; this is known as the 

correspondence problem. This problem is often simplified when the camera positions are close 

together since there is a greater number of overlapping points. However, even though the 

correspondence problem can be simplified, it is still computationally intense, taking hours rather 

than minutes like SFS solutions [17]. 

Some researchers have overcome the correspondence problem by either user input or by 

overlaying a surface with a known pattern then performing correspondence on the pattern. This 

is extremely effective as can be seen in work by Paul Debevec with his program called Facade 

which allows users to construct an underlying model of a building then uses multiple images to 

fine tune the model [18]. However, this has constrained the problem to the point where user input 

is required. 

While stereopsis provides results that rival range scanners with far less equipment cost, 

the algorithms still require a significant amount of post processing time that limits its uses in 

real-time applications like computer vision. However, while performing stereopsis on an entire 

image would be slow, using stereopsis to solve for depths at individual points is still feasible for 

use in real-time systems. We present our use of stereopsis to assist in solving the challenge of 

ambiguity in Section 3.1. 

2.6.2 Image Segmentation 

Image segmentation is typically used to distinguish objects in an image from the 

background [31]. There are many different types of image segmentation but the four most 
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popular techniques are: threshold techniques, edge-based methods, region-based techniques, and 

connectivity-preserving relaxation methods. 

Threshold techniques are based on local pixel information. If the difference in intensity 

from one pixel to the next is past a predetermined threshold then an edge is marked between 

them. These techniques work well when object edges are well defined but fail when object edges 

blend in with the background. 

Edge-based methods rely heavily on edge detection. Once an edge is detected it is then 

used to segment an image. These methods are again very prone to problems when images are 

blurred since it is difficult to identify hard edges or breaks in the image. 

Region-based methods work by starting at a given pixel then grouping it with 

neighboring pixels that are of similar intensity values. Once individual regions are created they 

are then merged by some criterion. If the merging mechanism is too stringent fragmentation 

occurs. For looser merging mechanisms blurring regions become troublesome. These methods 

often uses the two techniques above to aid the segmentation. 

Connectivity-preserving relaxation techniques segment by first generating a spline 

curve over an initial contour region. It then expands and shrinks the spline curve according to 

some energy function until that function is minimized and the curve accurately describes an 

edge. The most common problem with this technique is getting stuck at local minima [31]. 

Image segmentation methods have proven to be an efficient way to separate an image, 

and thus the problem domain, into a set of simpler tasks [31]. This advantage will prove to be 

useful in our later discussion on solving the problem of multiple materials in Section 3.2. 
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Chapter 3 

Algorithm 

This chapter describes our new algorithm for SFS that expands upon the work of Zeng 

and colleagues [4], and uses stereopsis and image segmentation. Our algorithm satisfies the 

following criteria: 

1. Captures depth information from a single object using a single light source and two 

cameras. 

2. Captures depth information in real-time. 

3. Operates autonomously (i.e. with no user input). 

4. Allows for surfaces with multiple local minima and local maxima. 

5. Allows for surfaces with multiple materials. 

6. Allows for surfaces with specular components. 

We describe how each of the three open challenges of SFS will be handled by our new hybrid 

algorithm then present the details of the algorithm. 

3.1 Solving the Challenge of Ambiguity 

As we saw with the work of Zeng and colleagues [4], the challenge of the convex versus 

concave ambiguity can be solved with the help of a user. However, if we want to construct a SFS 
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technique that can be used in fields where user interaction is not feasible (e.g. computer vision), 

then we must remove the user from the process. 

In Zeng’s work, a user specified a series of normals, then those normals were used to 

determine the location of peaks. This was done by tracing up hill to locate high intensity regions 

in the input image. These high intensity regions were then marked as peaks [4]. Instead of having 

the user input surface normals then solving for surface peaks from the input normals, why not 

have the user indicate peaks directly? As stated before, they choose the input of normals because 

it is easier for a user to recognize surface orientation instead of indicating depth. However, it is 

easier for a machine to indicate depths of certain points using stereopsis rather than specifying a 

handful of normals. 

With this in mind, we propose a new SFS technique that would work by first capturing 

two images of an object from slightly different view angles in order to use stereopsis to solve for 

depth for only certain pixels. The algorithm then proceeds by first locating the pixels in one of 

the images that have greater intensities than all of its neighboring pixels in the same image. 

These pixels are marked as possible peaks. Stereopsis is then used to calculate the depth at each 

of the marked possible peaks. Finally, FM-SFS is performed from these peaks. The advantage 

this technique has over the work of Zeng is that the user is eliminated from the process.  

To summarize, once the images are captured the algorithm proceeds as follows. 

1. Iterate through all intensity values in an image and determine which values are possible 

peaks. That is to say 

for all x, y pixel coordinates in an image 

      if Intensityx-1, y <= Intensityx, y and Intensityx+1, y <= Intensityx, y and 
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        Intensityx, y-1 <= Intensityx, y and Intensityx, y+1 <= Intensityx, y then 

               Mark x, y coordinate as possible peak           

2. Use stereopsis to determine the altitudes at each of the possible peaks. 

3. Perform FM- SFS using the computed depths as initial values into the depth sorted 

priority queue. 

Because this method uses the FM-SFS algorithm in the same way as [4], it would yield 

the same results that are shown in the work of Zeng and colleagues. The only difference between 

the Zeng’s technique and our technique is the way we determine the initial depths of the input 

points. Our technique could potentially identify more peaks than [4], however, since peaks will 

already have their depths computed, these values will not have to be recomputed during FM-SFS 

speeding up this stage of the algorithm. 

The use of stereopsis to remove the user from the SFS problem allows the technique to be 

used in a wider number of applications. Some results of this autonomous version of SFS can be 

seen in Figure 3.1. 

 
Figure 3.1 Using Stereopsis to Solve the Challenge of Ambiguity: (a) Input 

image of a vase. (b) Surface constructed through the help of user input. (c) 

Surface constructed autonomously using stereopsis to determine peak 

depths. 
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As can be seen in the figure the surface constructed using stereopsis to determine peak 

depths is virtually identical to the surface constructed with the help of user input. We now have 

an autonomous solution to the challenge of ambiguity. 

From experimentation the user is useful since the current state of peak detection yields an 

excessively large number of possible peaks and since correspondence in this algorithm is poor, 

completely autonomous results are sometimes unreliable. Once peak detection and 

correspondence algorithms improve this will not be an issue. However, for some objects like a 

face (shown later in Section 4) we use minimal user input to select which points out of the 

marked possible peaks stereopsis should be run on. 

3.2 Solving the Challenge of Multiple Materials 

 Since most SFS techniques assume the input image is of a continuous surface it is 

important to have a way to distinguish between different materials on a given surface. Image 

segmentation provides us a way to separate a surface into multiple regions. We can then modify 

our SFS algorithm for each region to insure that the transitions between materials are smooth. 

The FM-SFS algorithm used by our SFS algorithm relies on an equation that relates 

intensity values to change in depth. Equation 2 is repeated below. 
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Intensity values in this equation can be constrained to range from one to zero. For 

completely lambertian surfaces this equation works well since one corresponds to a flat region. 

However, for darker materials the maximum intensity is less than one. This poses a problem for 
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SFS algorithms since an intensity less than one implies that the region is sloped. Our technique 

solves this problem by shifting the intensities for a given region to always have a range from one 

to zero. This is done by dividing the intensity of a given pixel by the intensity of the brightest 

pixel in the material. This forces the brightest point of any material to correlate to a flat region. 

 
Figure 3.2 Two Images with Different Intensity Ranges: (a) An image of a 

sphere with intensity values ranging from 1 to 0. (b) An image of the same 

sphere with intensity values ranging from .75 to 0. 

For example, if an image of a sphere like that seen in Figure 3.2 has an intensity range 

from .75 to 0 we modify this image by dividing each intensity value by .75 to give the intensities 

the range from one to zero. After this transformation is complete we can now continue to 

perform our SFS technique using Equation 1. 

This preprocessing of our input image can be done for each region of the image to insure 

that all intensity values on an image are based on a range from one to zero before performing 

SFS. The process proceeds as follows. 

1. Perform image segmentation to separate the image into materials. 

2. Loop through all materials computing the brightest point of each material. 
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3. Identify the global brightest point from all the materials and mark this intensity as the 

maximum intensity for the material. 

4. Then loop through all remaining materials and compute the maximum intensity by 

inferring it from looking at neighboring materials (Refer to Section 3.2.1). 

5. Use the brightest point for each material and compute transformed intensity values for the 

entire image. 

Once this process is completed the resulting image will have all intensity values based on 

a range from one to zero. We can now use our SFS algorithm just as before. 

3.2.1 Computing the Maximum Intensity for a 

Material  

Computing the maximum intensity for a material that contains a peak is straight forward. 

Simply iterate over every pixel to determine the maximum intensity value. However, if a region 

does not have a peak, the point with the highest intensity value will not correlate to a flat area as 

when a peak is present. 

To determine maximum intensity values for regions without peaks we have to use 

information about our neighbors. For example, 

Preconditions: 

1. Region A neighbors region B. 

2. Region A has a computed maximum intensity, region B does not. 

3. Assume that the transition between region A and region B is continuous. 
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Algorithm: 

1. Find two border points on the transition between region A and region B. 

2. Since the transition between the regions is continuous we can formulate the following 

constraint about the intensity values of the points. 

Bon Point Brightest 

Bon Point Border 

Aon Point Brightest 

Aon Point Border 
=  

3. Determine the ratio between the border point in region A and the brightest point on 

region A. 

4. Since the intensity value of each border point are known and since the brightest point on 

A is known. We can solve for what the brightest point on B would be. 

Sample: 

 Known: 

  Border point on A = .5 

  Border point on B = .3 

  Brightest point on A = 1.0 

  Brightest point on B = X 

 Solving for X: 

X

3.0

0.1

5.0
=  

)3.0(0.15.0 =X  

6.0=X  
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With this preprocessing step we can now eliminate the challenge of multiple materials. 

This process does add a considerable processing time to our technique but Section 3.4 will show 

that this process can be combined into the FM-SFS technique reducing the execution cost. We 

can even extend this process to use stereopsis to compute depths at points on given materials to 

determine whether the materials are part of the same object or part of a separate object. This 

expansion is left for future work. 

3.3 Solving the Challenge of Specularity 

The challenge of specularity is not that far from the challenge of multiple materials. Like 

solving for multiple materials we can think of solving for specularity as a preprocessing step. 

Also like multiple materials, the problem lies within the intensity range. 

Again our desired intensity range is from one to zero for a lambertian surface with only a 

diffuse component in the material. If we are dealing with a material with a specular component, 

this can cause bright regions that are much larger than would have been perceived without a 

specular component, our range would be less. An example of this can be seen in Figure 3.3. 
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Figure 3.3 Material with and without a Specular Component: (a) An image 

of a sphere without a specular component with intensity range from .75 to 0. 

(b) An image of the same sphere with the same diffuse component in the 

material but with an added specular component causing the brightest point 

to have an intensity value of 1 instead of .75. 

In addition to dealing with multiple materials, we need to adjust for the specular 

components of the image. Recall from Figure 1.2 that our intensity function normally contains a 

specular component.  

 
Figure 3.4 Improving the Challenge of Specularity: A diagram of how the 

region affected by the specular component is separated. 

Our solution for handling the specular component is to break the material into two 

sections. The section affected by the specular component and the section not affected by the 

specular component. We can then treat these sections as different materials and solve them 
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separately. While this method is still an approximation, it is an improvement over most SFS 

techniques which simply ignore specular components.  

3.4 Summary of Algorithm 

Now that we have determined solutions to each of the challenges that SFS faces we must 

combine them to form a complete solution to the SFS problem. The following is an outline for 

the combined technique that takes advantage of all the solutions discussed previously. 

Preconditions: 

1. The surface to be modeled must be captured into two images from two cameras from 

slightly different view directions. 

2. The distance between the cameras as well as the focal length must be known. 

3. There is a single light source placed between the two cameras. 

4. The scene must be captured from a far enough distance away such that the light source is 

effectively at the optical center of each camera. 

Algorithm: 

1. Process one of the two images for possible peaks as described in Section 3.1. 

Note: this will still work for multiple materials. Borders will not be a problem since peaks 

are determined by looking at all neighboring pixels and not just pixels to any one side. 

2. Use stereopsis to compute depths of the possible peaks as in Section 3.1. 

3. Mark each peak as coming from a different material and store the intensity of the pixel as 

the maximum intensity of the material as discussed in step 3 in Section 3.2. 
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4. Perform FM-SFS with the following modifications: 

a. When neighboring pixels are placed into the priority queue compute the 

difference between color values of the computed pixel and the pixel to be inserted 

into the queue. Check this difference against a threshold performing threshold 

based image segmentation (refer to Section 2.6.2). 

i. If the difference is greater than the threshold then mark the pixel as part of 

a new material and compute the maximum intensity for the material as 

discussed in step 4 in Section 3.2. 

ii. Otherwise mark the pixel to be inserted as coming from the same material 

as the computed pixel. 

b. When pixels are removed from the priority queue modify their intensity values to 

fit in the intensity range of their material as described in Section 3.2. 

Note: As discussed in Section 3.3 the handling of multiple materials will handle specular 

highlights since we can treat specular regions as different materials. 

The final result will be a surface constructed of an object that can contain multiple peaks, 

multiple materials, and specular regions. The accuracy of this technique will be demonstrated in 

future work using data from range scanners as an oracle. 
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Chapter 4 

Sample Acquisition 

The implementation of our algorithm was done in C# using OpenGL. C# was used not for 

its performance but for its rapid GUI development allowing for increased focus on validating the 

algorithm. Tests were run on an AMD Athlon XP 3200+ 2.0 GHz processor using 320 x 240 

input images. Below are step by step captures of the acquisition of a simulated vase.  

1. Two images were captured from a test scenario of a vase containing multiple materials. 

  
Figure 4.1 Stereo View of Vase: Two captured images from slightly different 

view directions. 
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2. Once our input images were captured we ran our autonomous SFS technique with 

handling of specular highlights and multiple materials disabled. Stereopsis was used on 

multiple points to compute absolute depth then FM-SFS was executed to construct the 

surface. 

 
Figure 4.2 Constructed Surface Using FM-SFS: Surface constructed with 

handling of specular highlights and multiple materials disabled. Surface was 

constructed in approximately 0.3s. 

As can be seen in Figure 4.2, without handling multiple materials the green material in 

the input images produce extremely slopped regions on the constructed surface. This is 

due to the fact that its intensity range is not based on a one to zero scale. 
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3. Next, we ran the algorithm again with all features enabled. The final surface was 

constructed in approximately 0.33s, just slightly slower than with handling of multiple 

materials disabled. 

 
Figure 4.3 Constructed Surface with Handling of Multiple Materials: Surface 

constructed with handling of specular highlights and multiple materials 

disabled. Surface was constructed in approximately 0.33s. 

Since the handling of multiple materials modified the green materials intensity range to 

use a one to zero scale, the surface closely resembles the vase where the input images 

were captured from. 
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4. Finally, we displayed to segmentation of the surface to determine where our algorithm 

perceived different materials. 

 
Figure 4.4 Identified Materials on Vase: Surface in Figure 4.3 showing were 

the algorithm perceived different materials. 

It can be seen in Figure 4.4 that our algorithm perceived many more material changes 

than actually occurred in the input images. This can be attributed to the threshold image 

segmentation technique used. 

4.1 Additional Acquisitions 

In addition to the vase acquisition we provide two more acquisitions with discussion on 
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there strengths and weaknesses. 

 
Figure 4.5 Face Acquisition Example: (Left) Input image of a face containing 

multiple materials. (Right) Constructed surface. 

Similar to Figure 4.3 we can see in Figure 4.5 various imperfections in the regions 

surrounding the boundaries of the input image. This problem is caused by two weaknesses with 

the implementation of our algorithm. 

First, since the segmentation technique is integrated into the Fast Marching Method the 

technique perceives many more materials than it should. When the Fast Marching Method jumps 

around the surface it marks new materials and there is no process to merge two materials that are 

the same on different regions of a surface. This could be fixed by changing the segmentation to 

be a preprocessing step. 

The second problem is with the type of image segmentation technique used. As 

mentioned before, this could be improved by moving from a threshold based technique to an 
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edge based technique. 

 
Figure 4.6 Real Image Acquisition Example: (Left) Input image of a real 

face. (Center) Surface constructed using the FM-SFS (Right) Surface 

constructed using the FM-SFS with handling of multiple materials. 

When running our FM-SFS with multiple materials on real images like in Figure 4.6 we 

see an improvement over unmodified FM-SFS but we still suffer from the problems with the 

image segmentation method used. Our technique more closely resembles that face the image was 

acquired from, however their still are rough regions around the eye brows caused by the image 

segmentation technique used. 

Initial results of the presented algorithm are promising, but some weaknesses can be seen 

that leave room for improvement.
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Chapter 5 

Conclusion and Future Work 

We have shown how techniques from other fields can be used to overcome the weakness 

of SFS. To achieve our goal of an autonomous SFS solution that performs well on real images 

we have identified the major challenges that occur in real images. We chose to address the 

challenges of ambiguity, multiple materials, and specularity because previous assumptions that 

address these problems have been too limiting. Our method uses stereopsis and image 

segmentation to solve the three open challenges of SFS. We propose a hybrid technique that 

allows for an autonomous solution to the SFS problem that can handle multiple peaks, multiple 

materials, and specular components. 

Our method performs reasonably well when objects are simple enough that our 

correspondence succeeds and when breaks between materials are harsh. While we have greatly 

reduced the reliance on traditional SFS assumptions we have introduced the need for two images 

rather than one. This restriction is acceptable for newly captured data, but for previous images 

where only a single image is available the use of stereopsis will not be possible. However, our 

handling of multiple materials is not coupled with stereopsis and could still be applied to these 

scenarios. 

The following is a list of future work: 
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1. Validate the accuracy of this technique using data acquired from a Laser Range Scanner 

as an oracle. 

2. Expand the algorithm to handle scenes with multiple objects (refer to Section 3.2). 

3. Improve the algorithm’s correspondence technique. This would improve the algorithms 

autonomous performance and allow our technique to operate on more complex surfaces. 

4. Improve the algorithm’s image segmentation technique to use edge segmentation or 

another more reliable technique. 

Once these modifications are made this algorithm will be able to be applied to the 

entertainment industry, medical fields, and also allow autonomous vision systems to recognize 

and visualize scenes in full 3D. 

Our hybrid approach of combining SFS, stereopsis, and image segmentation will allow us 

to move away from traditional per pixel stereopsis and move towards a much more time efficient 

per region stereopsis. The idea of per region stereopsis should be researched further using this 

work as its foundation. 
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Appendix A: Deriving a technique for SFS 

In order to gain a greater understanding of SFS and its challenges it is useful to walk 

through the creation of a SFS technique to see where some of the concepts come from and where 

some of the challenges arise. The following section will give you a brief walk through of my 

attempt at creating a propagation approach to the SFS problem. 

My SFS technique had its start from one of the basic models of 3D lighting: the Phong 

model. The Phong model shows us that the shading of an image can be computed by the angle at 

which light hits a surface [27]. This model also deals with the specularity of a surface but for the 

simplicity of this example we will assume a lambertian surface and ignore the specular 

component of his equation. 

Phong's basic equation for the intensity value preconceived by a viewer is given by the 

following equation, 

NLI ⋅=                                  (1) 

where I is the intensity perceived, L is the light vector, and N is the normal of the surface at a 

given point. If we normalize the light vector and normal, and recognize that the dot product is 

simply the product of the lengths of the two vectors times by the cosine of the angle between 

them, we can rewrite Equation 1 to be as follows, 

)cos(θ=I                                  (4) 
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where Ө is the angle between the light vector and the normal of the surface. A graphical 

description of this equation can be seen in Figure A.1. 

 
Figure A.1 Phong Model Diagram: Graphical example of the Phong model. L 

is the light vector, N is the surface normal, R is the reflected vector, and V is 

the view vector. For the purposes of this paper, R and V are ignored. 

If we rewrite Equation 4 in terms of I, we see that the angle between the light vector and 

the normal can computed as follows,  

)arccos( I=θ                          (5) 

The angle alone does not help us much, but if we know the light vector we can use the angle to 

get the normal of the surface. The light vector can either be given, or we can assume, as most 

SFS methods do, that the light is at the optical center of the camera. Now that we have the light 

vector we can compute the normal using our computed value for Ө. 

Once we have our normals we can compute depth by recognizing that our information 

comes from a square grid of intensity values. If we make the assumption that our surface is 
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continuous we can compute the depth at any point by using the depth of our neighbor plus the 

change in depth over the pixel we are currently working on. This change in depth can be 

computed using some simple geometry. 

Figure A.2 Calculating Change in Depth: Geometric derivation of change in 

depth 

However, there is still a problem. Given that we know the light vector and the angle 

between the light and normal we have a continuous circle of possible normals. If we think about 

the problem in terms of sphere coordinates (refer to Figure A.3) we realize that we have only 

solved for the Ө. We still need to find the Ф. 
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Figure A.3 Polar Coordinates: Illustration of polar coordinates 

Now, we could introduce a constraint that if we recognize that our data comes from 

square pixels on an image, we can constrain Ф based on our neighbors. During our computation 

of depth we will need to march from some starting point outward. As we are marching we can 

set our Ф with respect to the direction we are traveling. For example, if we are traveling down an 

image we can say Ф is -90 degrees with Ф zero when traveling to the right. However, if we 

remember that we are trying to compute depth and do not really care about our normals we will 

realize that Ф is not used in the computation of change in depth (refer to Figure A.2). 

Now it seems we have all the information we need to construct a surface from an image 

of a lambertian surface. We have computed the important component of our normal in sphere 

coordinates, the ө, and we have derived a way to compute the depth from this Ө. Now our 

combined solution looks like this, 

))(tan(arccos Idepth =∆           (6) 

So, how well did we do? Well if we rewrite the equation we derived we realize that it is 

exactly the same as the Eikonal equation (Equation 2) discussed in Chapter 2. A proof of this 
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can be found in Appendix C. Also our downhill marching from a single start point is the exact 

same technique that FM-SFS uses. So, with some simple reasoning we have derived the state of 

the art in SFS techniques. 
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Appendix B: Proof of equivalence between 

Eikonal Equation and Derived Equation 

 

Derived Equation = tan ( arccos ( I ) ) 

tan ( arccos ( I ) ) = I
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