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Abstract

Continuous Energetically Optimal Paths Across Large Digital Elevation Data

Sets

by

Jason Rickwald

Until recently in human history, walking has been the primary mode of trans-

portation. Because of this, the paths taken and the distances traveled by someone

on foot are of significant interest to archaeologists, anthropologists, and histori-

ans. Previous work has focused on developing tools that use a human-centered

metric, taking into account the geography between two points when consider-

ing possible paths. This thesis presents improvements for finding energetically

optimal paths over large scale digital elevation data.

Specifically, we present tools which can support gigabytes of digital elevation

data. Furthermore, Dijkstra’s shortest path algorithm, which determines the

cost to a data point using only graph edges, is traded for the fast marching

algorithm, which accounts for continuous paths across the surface of the data.

Other contributions of this work include an algorithm for fast marching over

large data sets that is based on a domain decomposition method intended for

parallelizing fast marching. Also, the tools are demonstrated on digital elevation

data for a large portion of Oregon, and recommendations for future improvements

are made based on the observed results.
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Chapter 1

Introduction

For most of the time that man has roamed the Earth, this roaming has been

done on foot. Therefore, tools for the analysis of terrain and modeling of pedes-

trian travel are of much interest to archaeologists, anthropologists, and historians.

Recently, work has been done to create tools that use a human-centered metric

to model paths and distance over geography. Specifically, the metric used for dis-

tance calculation and path creation in [1, 2] is the number of calories expended by

a person to traverse terrain. Intuitively, this models a human’s desire to minimize

the energy used in travel. These tools can be applied to archaeological study to

give a more interesting definition of geographic proximity. Traditionally, “as the

crow flies” distance is used to determine, say, the proximity of an obsidian quarry

to a village. However, this metric might take a traveler right through a moun-

tain range. Energetic distance accounts for the difficulty of traveling around or

through difficult areas like mountains.

The tool presented in [1, 2], called Energetic Analyst, was worthwhile for

showing that such human-centered metrics could be useful to many fields of study.

However, it was rather limited in its scope. This work aims to address some key
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limitations of Energetic Analyst. First, the tools in this work can support multiple

gigabytes of digital elevation data. Secondly, this work uses the fast marching

algorithm [3, 4, 5] to find lowest energetic paths. Though fast marching still

only provides approximations, it provides more accurate results than Dijkstra’s

shortest path algorithm, which was used by Energetic Analyst. Finally, the per-

formance impact of running the fast marching algorithm on multiple gigabytes of

data drove us to develop a domain decomposition-based method for fast marching

that shortens running time with some cost to accuracy.

The general motive behind this work, then, is for a researcher to be able to

use these tools to accurately model pedestrian travel over large digital elevation

data sets. To test the success of this work, we will analyze digital elevation data

for a large portion of Oregon. Path start and end points are placed near to where

the last leg of the Oregon Trail enters and terminates in Oregon. The Oregon

Trail is a historical path taken by many Western pioneers in the 19th century.

Initial results show a strong correlation between the calculated path and the

historically documented route of travel, though the dissimilarities will lead us to

make recommendations for future improvements that may provide better results.

1.1 Problem Definition

Before continuing, it would be worthwhile to give a more formal definition

of the Computer Science problem that this work aims to solve. We want a tool

that can find the discrete energetic geodesic over multiple gigabytes of

digital elevation data for a single source and multiple destinations. We

can define discrete energetic geodesic similarly to the way discrete geodesic is

defined in [6].
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The Discrete Energetic Geodesic Problem is to find the shortest path
in the energetic (caloric) metric from source point s to destination
point t such that the shortest path is constrained to lie on the surface
of the mesh P.

Given that we are working with digital elevation data, which comes as a two

dimensional grid of height values, our P can be a triangle or quad mesh made

from this underlying height field. This mesh is inherently regular and manifold,

which simplifies the algorithms for finding geodesics. Finally, when we say that we

want to solve this problem for a single source and multiple destinations, we mean

that a single run of a geodesic-finding algorithm should calculate the energetic

distance from a selected point to all other data points in our digital elevation

data. This will be useful for visualizing the caloric cost to anywhere on our data.

1.2 Our Contributions

Our contributions to the work below are outlined here.

• We have developed a set of tools for performing energetic analysis of very

large digital elevation data sets.

• We have adapted the fast marching algorithm to calculate energetic costs.

• We have developed a domain decomposition-based fast marching algorithm

that can run in about a third of the time of standard fast marching when

working with large data sets.

• We have compared a known historical trail to a calculated energetically

optimal trail in order to make recommendations for future improvements

to the analysis tools.
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Chapter 2

Previous Work

This section will describe work relevant to our continuous energetic analysis

tools. First we will describe the previous tool that this work builds on. Next,

we will discuss a number of algorithms capable of computing discrete geodesics.

Finally, we describe the domain decomposition fast marching method that we

modify for speedier fast marching of large data sets.

2.1 Energetic Analyst

The work presented here is based primarily on the Energetic Analyst tool

developed by Brian Wood [1, 2]. The purpose of this tool was to aid archaeolo-

gists by using a human-centered metric for geographic proximity. Wood created

Energetic Analyst for applications such as determining what nearby natural re-

sources, such as obsidian quarries, were used by tribes. It could also be used

to find trails between known prehistoric villages. Wood does little to prove the

superiority of an energetic metric over previously used metrics; though he does

show that lowest energetic paths can save a significant amount of energy when
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compared to more direct paths. Intuitively, real paths taken by humans or the

decision to set out to a natural resource should be affected by one’s desire to

conserve energy. For more information on other metrics used by archaeologists

and anthropologists, we refer the reader to Wood’s work [1].

The equations used in Energetic Analyst were based on existing research for

modeling human metabolism and energy expenditure under a variety of condi-

tions [7, 8, 9, 10, 11]. We use the same equations in our work. First, we calculate

the metabolic rate, in watts, for traveling between two points. The equation for

this rate is different depending on if one is traveling downhill, Equation 2.1, or

uphill, Equation 2.2.

MR = M − C (2.1)

MR = M (2.2)

M = 1.5w + 2.0(w + l)(
l

w
)2 + n(w + l)(1.5v2 + 0.35vg) (2.3)

C = n(
g(w + l)v

3.5
− (w + l)(g + 6)2

w
+ 25− v2) (2.4)

MR is the metabolic rate in watts

w is the person’s weight in kilograms

l is the load carried in kilograms

v is the walking speed in meters per second

g is the percent grade

n is the terrain factor (1 is the terrain factor for a treadmill)
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Once the metabolic rate has been calculated, we use the time required to

travel between points in order to convert the metabolic rate to energetic cost in

kilocalories. Unfortunately, these equations can under-predict caloric cost when

traveling slowly downhill. To correct for this, the calculated cost is compared to

the cost calculated from the standing metabolic rate. If the standing metabolic

rate is greater, we use that.

SMR = 1.2×BMR (2.5)

BMRmale = 66 + (13.7× w) + (5× h)− (6.8× a) (2.6)

BMRfemale = 655 + (9.6× w) + (1.7× h)− (4.7× a) (2.7)

SMR is the Standing Metabolic Rate in watts

BMR is the Basal Metabolic Rate in watts

w is the person’s weight in kilograms

h is the person’s height in centimeters

a is the person’s age in years

The Energetic Analyst tool reads in GIS1 digital elevation models. Digital

elevation models, abbreviated as “DEMs,” are available from a number of sources,

including the United States Geological Survey [12] and the National Geophysical

Data Center [13]. Energetic Analyst supports DEMs in the ArcInfo ASCII DEM

format originally developed by ESRI [14]. This format is supported by a number

1GIS stands for Geographic Information System. It is a broad term for a number of software
systems used by researchers, planners, and government to store and analyze a wide range of
geographic data.
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of GIS software packages, particularly those developed by ESRI. However, the

majority of DEM data available is in the USGS SDTS format. This data must

be converted to use. Due to the simplicity of the ArcInfo ASCII DEM format as

compared to the USGS SDTS format, we also only support the ArcInfo ASCII

DEM format.

Energetic Analyst loads DEM data in and constructs a graph representation

of it. Vertices in the graph are the data points from the DEM, edges are created

from each vertex to its eight neighbors, and edge costs are created using the caloric

cost equations from above. This graph is then used to construct lowest calorie

paths and caloric terrains by running Dijkstra’s shortest path algorithm on it. A

caloric terrain is what Wood calls his visual representation of caloric proximity

from a point. Energetic Analyst allows the user to view DEM data, caloric

paths, and caloric terrains in an OpenGL [15] viewer window. Unfortunately,

there is very little interactivity built into this application. For example, the user

must enter path start and end points as degrees latitude and longitude rather

than simply selecting points on the displayed terrain. This is a problem that

we address in our own viewer application. Furthermore, the use of Dijkstra’s

algorithm constrains paths to lie on graph edges, which also affects the correctness

of the caloric terrains. We try to improve correctness through our use of the fast

marching algorithm. Finally, the Energetic Analyst tool tries to keep all digital

elevation data and data structures in memory, which severely limits the size of

the terrain that the user can work with. Wood reports that using a machine with

512 megabytes of RAM he is able to support DEMs up to about 650 x 650 at 90

meter resolution. We address this issue by only keeping some data in memory

and swapping the rest to disk. Theoretically, this approach would allow us to
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support as much DEM data as can fit on your storage system2. The Oregon data

that we use, for example, is 23951 x 14037 at 30 meter resolution.

2.2 Discrete Geodesic Algorithms

In this section we discuss three different algorithms that could be used to

find discrete energetic geodesics on digital elevation data. They are Dijkstra’s

shortest path algorithm, which was used in [1, 2], the MMP algorithm [16, 17],

and the fast marching algorithm [3], which we choose to use in our work due to

its balance of accuracy and speed.

2.2.1 Dijkstra’s Shortest Path Algorithm

Dijkstra’s shortest path algorithm is probably the easiest algorithm to un-

derstand and to implement for finding discrete geodesics. It is a relatively old

algorithm developed by Edsger W. Dijkstra for finding the shortest path between

two vertices on a weighted graph [18]. As was described in Section 2.1, this

algorithm can be easily adapted for finding lowest calorie paths by converting

the elevation data grid to be a directed weighted graph with edges between each

data point and its eight neighbors. Two edges are made between a point and a

neighbor, as can be seen in Figure 2.1 — one for each direction of travel. The

cost associated with an edge is the caloric cost of traversing that edge in its given

direction. The inputs to Dijkstra’s algorithm are this graph and a starting point.

Also, if you want the algorithm to terminate with a particular path, it may take

the end point as an input. The algorithm is as follows.

2Though, this being research work, it is very likely that we have a number of size restrictions
imposed by our data structures.
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1. Label the start vertex with a cost of 0 and add it to the set I. Vertices in

set I are considered final, and their cost labels will not change.

2. Label the neighbors of the start vertex with the costs of traversing their

adjacent edges. Add these neighbors to set F. Set F makes up a fringe of

trial vertices. These vertices’ costs are still subject to change.

3. Add all other vertices to set O and label them with a cost of ∞. Vertices

in O have not been seen yet.

4. Loop until all vertices are in set I.

(a) Pick a vertex, v from set F with the smallest cost label. Move v from

F to I.

(b) For each neighbor of v in F, update its cost label with the cost of v

plus the cost of traversing the adjacent edge, but only if this cost is

less than its current cost label.

(c) For each neighbor of v in O, set its cost label with the cost of v plus

the cost of traversing the adjacent edge. Remove the neighbor vertex

from O and put it in F.

Many varieties to Dijkstra’s shortest path algorithm have been proposed over

the years, but all algorithms are similar to the one above. Usually, a priority

queue is used to perform step 4a, which gives the algorithm a running time

complexity of O(NlogN). This is because the loop runs over all N vertices and

it takes logN time to add a vertex to the priority queue.

Dijkstra’s shortest path algorithm is good for finding discrete energetic geodesics

for a number of reasons. First, its simplicity makes it easy to implement, and

keeps its running times and space requirements fairly low. Also, the regularity
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Figure 2.1: A demonstration of how a DEM grid, left, is converted
to a weighted directed graph, right, that can be used as an input to
Dijkstra’s shortest path algorithm.

and density of our DEM data helps to reduce the amount of error caused by

constraining our paths to lie on graph edges. For small DEMs, this error is quite

tolerable. However, we decided to go with a more accurate method, as we wanted

to be able to handle much larger DEMs without much error accumulating far-

ther out from the start point. We did run a single test comparing the results of

Dijkstra’s shortest path algorithm to the results of the fast marching algorithm

(described below) for a 11,976 x 6016 point DEM, and we found that the caloric

costs calculated by Dijkstra’s shortest path algorithm were 230 calories greater

on average, with a maximum difference of 703 calories.

2.2.2 The MMP Algorithm

The MMP algorithm, sometimes referred to as “Continuous Dijkstra’s,” is

an algorithm for finding exact discrete geodesics over triangle meshes. The al-

gorithm and its data structures were originally defined by Mitchell, Mount, and

Papadimitriou in 1987 [16]. However, it was not actually implemented and tested
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until 2005 when it was implemented in [17] by Surazhsky, Surazhsky, Kirsanov,

Gortler, and Hoppe.

The algorithm works on a small number of basic principles which were proven

in [16]. First, within a triangle the shortest path must be a straight line. Second,

the shortest path that crosses an edge between two triangles must be a straight

line in the planar unfolding of the two triangles. Finally, shortest paths may only

pass through boundary vertices or vertices with total angle greater than or equal

to 2π. The angle of a vertex is the sum of the angles formed by its adjacent

edges. Vertices with total angle greater than 2π are called saddle vertices.

Using these principles, the algorithm proceeds by trying to track groups of

shortest paths that can be parameterized together. Such a parameterization of a

group of shortest paths is called a window. The algorithm stores one or more non-

overlapping windows on each edge of the mesh. These windows are propagated

out across the mesh in a Dijkstra-like sweep. An example window, w, is seen

in Figure 2.2. A window, such as w, parameterizes a group of shortest paths as

a 6-tuple (b0, b1, d0, d1, σ, τ). The endpoints of the window are b0 and b1, which

are stored as small distance values along the edge. The values d0 and d1 are the

distances to those endpoints, and the distance to any other point on the window

can simply be found as the linear interpolation of those two values. Finally, σ

is a binary value representing what side of the edge the source point is on. The

parameter τ will be described momentarily.

Shortest paths that run through boundary or saddle vertices require some

special treatment. There are conditions for which shortest paths will all follow

the same strip of triangles back to such a vertex, s, and pass through it. Beyond

vertex s, the shortest path back to the start point will be the simple geodesic

leading from the start vertex to s. Therefore, when creating a window for a group
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Figure 2.2: The left image shows windows that can be formed on the
edges based on source vertex s. The shaded region represents the paths
that form window w. The image on the right shows a window with a
pseudo-source, and the simple path from the pseudo-source back to
the source vertex.

of paths that lead back through s, we call s a pseudo-source. The distances d0 and

d1 then represent the distance back to the pseudo-source, and τ is the distance

from the pseudo-source back to the start point. This is also seen in Figure 2.2.

A few more things are necessary to do as we propagate windows out across

the mesh. First, there cannot be overlapping windows on an edge, so the algo-

rithm must choose a good intersection point for the two windows such that each

window contains the shortest distances back to the source vertex. The authors

of [17] elaborate on how this is done. Next, when a window w is adjacent to

a boundary or saddle vertex, we may have to add extra windows for spots on

edges that are not hit by propagating w. The boundary or saddle vertex becomes

the pseudo-source for these windows. Finally, the authors of [17] note that the

algorithm performs the best when windows are propagated out in a Dijkstra-like

sweep. This means that we must keep a priority queue of windows with the low-

est distance back to the source, and we pick the smallest each time we want to

propagate a window.
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The main benefit of the MMP algorithm is that it provides exact discrete

geodesics over a triangle mesh. However, this comes at a cost. The running time

and resource costs of the MMP algorithm are high — O(N2logN) and O(N2)

respectively. However, the authors of [17] note that these complexity results are

rather pessimistic, and report better performance for typical meshes. They claim

that this is because edges in a typical mesh will usually have a maximum of

about N
1
2 windows, rather than the N windows that the authors of [16] use for

their complexity analysis. Also, the authors of [17] develop a modification to the

algorithm, called window merging, that improves space and time requirements

while introducing some bounded error.

It seems possible that the MMP algorithm could be adapted to work with

digital elevation data represented as a triangle mesh. However, we chose not to

use the MMP algorithm for our energetic analysis tools for a number of reasons.

First, it is a slightly more complex algorithm. Second, even with window merging,

the space and time requirements make it a less appealing choice for working with

multiple gigabytes of data. Third, we are working with a grid, not a triangulation.

The grid can be triangulated, but is not inherently a triangle mesh. Finally,

though it probably could be adapted to produce discrete energetic geodesics, this

modification does not appear to be straightforward. For example, the second

principle that the MMP algorithm operates on, that the shortest path crossing

an edge is a straight line in the planar unfolding of the two triangles, is not true

for shortest energetic paths.
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2.2.3 The Fast Marching Algorithm

Another algorithm for finding discrete geodesics is the fast marching algo-

rithm [3]. The fast marching algorithm is an algorithm that, like Dijkstra’s

shortest path algorithm, can only compute approximate discrete geodesics. How-

ever, unlike Dijkstra’s algorithm, these approximate geodesics can cross faces in

our mesh. Therefore, the results of the fast marching algorithm can be more

accurate. Fast marching is actually an algorithm for tracking a wavefront over a

surface, so it has a multitude of applications outside of finding geodesics. These

include shape-from-shading, noise removal, and tracking interfaces in microchip

fabrication [19, 5].

The fast marching algorithm and, more generally, level set methods, were

developed to model and solve wavefront propagation problems. The goal is to

solve the static Hamilton-Jacobi equation, also called the Eikonal equation, given

below.

|∇T |F (p) = 1 (2.8)

Where F (p) is the positive speed of the front at point p, and T (p)
is the arrival time of the front at point p. For finding the shortest
distances, we say that 1

F
is the travel cost and T (p) is the distance

traveled to p.

Efficient algorithms for solving Equation 2.8 were developed independently

by Sethian [4, 5] and Tsitsiklis [20]. Their algorithms are rather similar, though

each developed them using a different approach. Tsitsiklis saw it as a trajec-

tory optimization problem, and describes an optimal control approach [20, 21].

Sethian developed a solution based on upwind numerical schemes [5, 21].

Fast marching works with the “boundary value formulation” of the problem.

The algorithm tracks a wavefront by developing an arrival surface T (p) that
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Figure 2.3: An example wavefront propagating over a surface. T0 is
the initial location of the wavefront. The other curves represent the
progress of the wavefront at time step T1, T2, etc.

would be generated by the motion of the front over the surface of the data. By

giving the wavefront an appropriate velocity through the data, one can produce a

wavefront whose arrival times at each data point correspond to some solution at

that point. The propagation of a wavefront to create an arrival surface can be seen

in Figure 2.3. The boundary value formulation states that the front must always

propagate outwards, and can never backtrack. This means that information must

be propagated “one way,” in the upwind direction, from smaller values of T to

larger values of T . This causal relationship between consecutive points in the

upwind direction is exploited to create a Dijkstra-like algorithm.

We now need to be able to describe the motion of the wavefront through

time. Unfortunately, this motion may not be well defined for all parts of the

front, as the curve that represents the front may not be differentiable everywhere.
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Figure 2.4: A shock is shown on the left. If every point on the wave-
front is moved forward by its velocity for the next time step, it would
run into itself. A rarefaction is shown on the right. If every point on
the wavefront is moved forward by its velocity for the next time step,
it would pull itself apart.

Sethian’s solution is to use upwind finite difference equations to find “viscosity

solutions” that conform to hyperbolic conservation laws. These “weak solutions”

approximate the motion of the front well and can handle shocks and rarefactions.

Shocks and rarefactions are described in Figure 2.4. We refer the reader to [5]

for a more thorough overview of these concepts.

At a high level, the fast marching algorithm is, indeed, very Dijkstra-like. The

algorithm given below is for a two-dimensional grid, like our DEM data; though

Sethian also describes how it can be modified for a triangle mesh [3].

1. With start point p within a grid cell, compute the distance from p to the

four vertices of the cell and label those vertices with their cost. Add those

vertices to the set F. Set F makes up a fringe of trial vertices. The cost

labels of these vertices are still subject to change.

2. Add all other vertices to set O and label them with cost∞. Set O contains

vertices that have not been seen yet.
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3. Loop until all vertices are in set I. Vertices in set I are considered final, and

their cost labels will not change.

(a) Pick a vertex, v from set F with the smallest cost label. Move v from

F to I.

(b) For each neighbor of v in O or F, update its cost label using the upwind

gradient approximation, but only if this cost is less than its current

cost label.

(c) For each neighbor of v in O, move v from O to F.

The real key to making the fast marching algorithm work well is the gradient

approximation used in step 3b. Sethian proposes the following upwind gradient

approximation.

|∇T | ≈ (max(D−xT,−D+xT, 0)2 +max(D−yT,−D+yT, 0)2)
1
2 = F (2.9)

Where D−x, D+x, D−y, and D+y are forwards and backwards opera-
tors representing the change in T in a specific grid direction.

For a point being updated, we calculate its label by solving the above approx-

imation for each of its neighbors in set I, and also each pair of its neighbors in

set I, and then picking the smallest solution. When using fast marching to find

discrete geodesics, Equation 2.9 simplifies greatly. When trying a pair of neigh-

bor points from set I, we just solve for Tu in the quadratic Equation 2.10. When

trying a single neighbor from set I, we solve for Tu in the degenerate quadratic

Equation 2.11.

(Tu − Tx)2 + (Tu − Ty)2 = 1 (2.10)

(Tu − Tn)2 = 1 (2.11)
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Figure 2.5: Error when running fast marching using Sethian’s gradient
approximation from Equation 2.9. Traveling through a point in the X
direction has a cost of 1, while traveling through the same point in the
Y direction has a cost of 2. Black is 0 error, and full red is an error of
35. For this test, the maximum error was 34.4, and the average error
was 32.3.

We chose the fast marching algorithm for our work because, one, it is not

much more difficult to understand and implement than Dijkstra’s shortest path

algorithm. Also, due to its use of a priority queue in step 3a, it has a similar

running time to Dijkstra’s algorithm — O(NlogN). Yet, it can attain a better

accuracy than Dijkstra’s algorithm, as geodesics are not constrained to be on

mesh edges. It should also be noted that there are implementations, such as [21],

that improve running time or space requirements; although one could find sim-

ilar modifications to Dijkstra’s algorithm. The accuracy of the fast marching

algorithm is dependent on the accuracy of the finite difference equation used to

approximate the gradient. One could use Equation 2.9 from above, or use a

higher order approximation as Sethian also suggest in [5]. The authors of [22]

describe a cost update procedure that is more accurate when the initial boundary

is a single point.

Modifying the fast marching algorithm to produce discrete energetic geodesics

then becomes a matter of picking an appropriate gradient approximation method.
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Figure 2.6: Error when running fast marching using the update step
from [23], Equations 2.12 and 2.13. This is otherwise the same test as
in Figure 2.5 above. The maximum error for this test was 1.7, and the
average error was 1.2.

Unfortunately, we cannot use Equation 2.9, or any of the other previously men-

tioned gradient approximations, because they assume that∇T is isotropic. When

working with energetic costs, ∇T (p) is dependent on the slope at point p, and

the slope through a point is dependent on the direction of travel, making ∇T

anisotropic. Tsitsiklis acknowledges this deficiency when working with anisotropic

costs in his own work [20]. The error that comes from running fast marching on

an anisotropic cost field using a typical gradient approximation method can be

seen in Figure 2.5.

Luckily, this problem has already been addressed. The authors of [23] also

needed to run fast marching on an anisotropic cost field. They use the following

finite difference approximation for updating a point’s cost. If updating from a

pair of neighbor points in set I, solve for Tu in the quadratic Equation 2.12. If

updating from a single neighbor in set I, solve for Tu in the degenerate quadratic

Equation 2.13.

(
Tu − Tx

Cx→u

)2 + (
Tu − Ty

Cy→u

)2 = 1 (2.12)
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(
Tu − Tn

Cn→u

)2 = 1 (2.13)

In these equations, Cn→u is the cost of traversing from the neighbor point n to

the point we are updating. The authors of [23] claim that this gradient approxi-

mation correctly handles the anisotropy in the cost field given the discretization.

Our own test, seen in Figure 2.6, shows that this update step does handle the

anisotropy well. We therefore use this finite difference approximation in our own

fast marching update step.

2.3 Domain Decomposition Parallelization for

Fast Marching

As will be described in later sections, our implementation of fast marching is

rather slow for large multiple-gigabyte data sets, even taking most of a day to

run on the large Oregon data set that we will use to evaluate our tools. This

drove us to develop a faster fast marching algorithm that is based on the domain

decomposition fast marching algorithm presented in [24]. Our work towards

this algorithm will be described in Section 3.2, and this section will provide an

overview of the domain decomposition method that it is based on.

The goal for the author of [24] was to develop various ways in which the fast

marching algorithm, described above in Section 2.2.3, could be adapted to run

on and utilize a parallel architecture. The fast marching algorithm is not an

inherently parallelizable algorithm due to step 3a, which relies on the picking of

a global minimum point at each iteration.
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Figure 2.7: The layout of the “ghost nodes” used for synchronization
of parallelized fast marching in domains A and B.
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The solution developed by the author of [24] is to break the full data set

into multiple smaller domains. Different threads of execution then run the fast

marching algorithm within each domain, picking the local minimum point when

reaching step 3a. This works fine for some of the points if these local minimum

points have the same value that they would have had if they were selected as

a global minimum point. However, we must address the dependencies between

domains, as there are points that should be affected by information propagating

across domain borders. This is done by requiring threads to synchronize access

to shared “ghost points” that exist on the borders between domains. Figure 2.7

shows the layout of domains with bordering ghost points. If a change is made to

a ghost point by one thread, it must notify the neighboring thread. That thread

then removes any points from set I, the final set, that have a larger cost than the

ghost point, and it moves fast marching back to that ghost point. This rollback

procedure only needs to be done with points that have larger cost values because,

as was discussed earlier, information only propagates from smaller points to larger

points (in the upwind direction). The modified fast marching algorithm that is

run by each thread within a domain is given below.

1. Perform steps 1 and 2 from the standard fast marching algorithm.

2. Loop until all vertices are in set I.

(a) Check the ghost points along the borders that are currently in set I. If

any ghost point g has moved to set I in another domain and now has

a smaller cost label, rollback fast marching by moving all points in set

I with cost label greater than or equal to the cost label of g back to

set F.
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(b) Pick a vertex, v from set F with the locally smallest cost label. Move

v from F to I.

(c) For each neighbor of v in O or F, update its cost label using the upwind

gradient approximation, but only if this cost is less than its current

cost label.

(d) For each neighbor of v in O, move v from O to F.

(e) If v is a ghost point for another domain, communicate the change to

the thread handling that domain.

3. Wait for all domains to complete or a ghost point g to be given a smaller

cost label and moved to set I in another domain. If a g is modified, perform

the rollback from step 2a and restart the algorithm at step 2b.
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Chapter 3

Implementation

Our solution is implemented as a number of simple tools, i.e. a tool for viewing

the data, a tool for running fast marching, a tool for creating paths, etc. We

wanted our tools to be able to handle multiple gigabytes of digital elevation

data by keeping only the data we need in memory and swapping the rest to

disk. Rather than trying to write our own code for managing large amounts

of varying data, we went with an existing database solution — the Berkeley

DB [25]. The Berkeley DB is very simple, robust, and customizable. It is not

a relational database. Rather, it provides a set of APIs for doing lower-level

database work such as organizing arbitrary chunks of bytes into hashes, b-trees,

and lists. It handles caching, sorting, storing and retrieving your data, and it

is a linked-in library, which makes it fast. It also has more advanced features

such as transaction support, locking support for multithreaded applications, and

recovery support via logs. These more advanced features were not needed in this

project, though, so they were turned off.
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3.1 Continuous Energetic Path Tools

Our first tool, called cepmakedb, creates the databases used by other tools

and populates them with data from ArcInfo ASCII DEM files. Large DEMs

typically come broken up into numerous smaller DEMs, so the input to this

program is a text file with the file names of the smaller DEMs arranged in a grid

as the DEMs themselves should be arranged when stitched back together. As the

tool processes the DEM data it collects the data together and writes it to the

databases in squares of nearest data points. This takes some advantage of the

spatial locality inherent in the data, so that a database page is likely to contain

points that are near to each other. This approach is better than writing the data

to the database in raster order, which would only take advantage of locality in

one dimension.

The next tool, called cepviewer, displays the visualizations of the DEM data

created by other tools. The default visualization, created by cepmakedb, is of the

elevation data. The colors in this visualization correspond to elevation. These

visualizations are all top-down orthographic projections of the data. The user

can switch between the available visualizations by pressing the space bar. The

user can also zoom in on areas of the data using their mouse. Left clicking in

a single spot creates and moves start and end points used by other tools when

performing fast marching and creating paths. If a path has been created, it is

also displayed by cepviewer. The cepviewer can be seen in Figures 3.1 and 3.2.

The cepcolor tool can be used for resetting the elevation visualization. It can

also be used to switch between the natural and rainbow color gradients seen in

Figures 3.1 and 3.2. The rainbow gradient, though less pleasant on the eyes, is

able to show more detail.
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Figure 3.1: A screenshot of the cepviewer application. It is currently
displaying elevations using a rainbow gradient. Red corresponds to low
elevations. As elevations increase, colors change from red to yellow to
green to blue to violet. This image also shows the outline of a region
selected for zooming.
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Figure 3.2: Another screenshot of the cepviewer application. This time
it is displaying elevations with a more natural color scheme, with brown
for lowlands, green for higher terrain, and white for very high peaks.
A path is also being displayed from the start point on the right to the
end point on the left.
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Energetic analysis of the DEM data is performed using the cepfm tool. It

checks for the presence of a starting point, set using the cepviewer application,

and performs fast marching out from it. Fast marching is performed as described

in Section 2.2.3, and the finite difference approximation to the gradient is used

from [23], as is described in Equations 2.12 and 2.13. Caloric cost is calculated as

it was in Energetic Analyst [1, 2], which is described in Section 2.1, Equations 2.1

through 2.7. Once fast marching has completed, cepfm creates two caloric visu-

alizations. One represents caloric cost with isocontours — curves of the same

color that are the same caloric cost from the start point. The other uses a color

gradient, currently the rainbow, to represent a more continuous caloric difficulty

terrain from the start point. These visualizations can be seen in Figures 3.3

and 3.4. There are actually two versions of the cepfm tool. One performs fast

marching in a standard way, and the other uses a modified domain decomposition

method to run faster. Section 3.2 contains more information regarding these two

tools.

The ceppath tool uses the start and end points set by cepviewer and the caloric

data created by cepfm to create a least-caloric path between the two points that

can be displayed by the viewer application. The correct way to do this would be

to follow the gradient of T from the end point back to the start point. This can

be done by solving the differential equation seen in Equation 3.1 [3].

dX(s)

ds
= −∇T (3.1)

The path is then traced by X(s). However, this approach for finding the geodesic

is not trivial. Therefore, we opted for a simpler solution. We create a path by

adding the end point to the path, picking its lowest cost neighbor, adding it

to the path, and proceeding in that manner until we reach the start point. As

pointed out by the authors of [26], this is guaranteed to be correct since T is
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Figure 3.3: A screenshot of the cepviewer application displaying caloric
isocontours as generated by cepfm. Curves of the same color are the
same caloric cost from the start point.

Figure 3.4: A screenshot of the cepviewer application displaying the
caloric gradient as generated by cepfm. The gradient is currently set
to be the rainbow, with red at low caloric cost and violet at high caloric
cost.
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defined increasingly from our start point. Future work might modify ceppath to

create paths by following the gradient in order to get a truer and less jagged

representation of the path.

3.2 A Domain Decomposition-Based Algorithm

for Fast Marching

Two versions of the cepfm tool were created. The first one does fast marching

in the normal way as described earlier. However, this tool could take multiple

hours to run on a very large DEM data set, even taking most of a day to run on

the large Oregon data set that will be used later for evaluating this work. There

are two likely factors contributing to this slowness. One is that we are incurring

a non-trivial amount of overhead when using the Berkeley DB to get and retrieve

single elements of elevation and calorie costs data. The second is that, while

running fast marching, we have numerous database cache misses and often have

to access the disk to get the required database pages. Figure 3.5 demonstrates

how we can get a cache miss with a very large fringe.

We wrote a second version of cepfm to address these issues. The algorithm

that it uses is based off of the domain decomposition method for parallelized fast

marching described by Herrmann in [24], which we reviewed in Section 2.3. In our

version of the algorithm, all of the data required to run the algorithm are broken

up into “chunks.” Herrmann calls these domains. The fast marching algorithm is

run within one chunk at a time, and the whole chunk of data resides in memory,

making access to it fast. When we are done with one chunk, it is written back

to the database and the next chunk is loaded. Reading and writing large chunks
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Figure 3.5: An illustration of how a very large fringe can cause a
database cache miss during fast marching. Each grid square represents
a collection of data points in the same database page. Blue pages are
in the cache. The algorithm just finished working with data in the
green page. The red page is needed for the next fast marching step,
but is not in the cache.
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Figure 3.6: A demonstration of domain decomposition-based fast
marching on a DEM divided into two chunks. (2) Fast marching is run
within the chunk containing the start point, A. (3) An initial fringe is
created in the bordering chunk, B, using the border values from chunk
A. (4) Fast marching is run within chunk B. (5) Border points in B are
compared with ghost points in A, and a value is found that is smaller
by more than the threshold amount. (6) Values larger than the mod-
ified ghost value are rolled back in chunk A. Fast marching is rerun
within chunk A using the modified ghost value. (7) Border points in
A are compared with ghost points in B, and a value is found that is
smaller by more than the threshold amount. (8) Values larger than
the modified ghost value are rolled back in chunk B. Fast marching is
rerun within chunk B using the modified ghost value.
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of data like this should hide some of the overhead of using the Berkeley DB, as

we make fewer accesses to it. Keeping the entire chunk of data in memory avoids

the issue of cache misses.

Our modification to the domain decomposition algorithm from [24] is intended

for a single thread of execution, so synchronization at the border nodes is not

necessary. However, we do employ the use of ghost nodes at the borders between

chunks as we still need to catch and handle dependencies between chunks. Our

algorithm went through a number of iterations before we settled on the version

that we present results for in Section 4.1. The first version of the algorithm was

simple and very similar to the domain decomposition algorithm of [24].

Figure 3.6 provides a visual overview of how this initial algorithm works. It

starts by running fast marching over all points within the chunk containing the

start point. We then run fast marching over all points in each chunk outward

from the starting chunk. Each successive chunk creates its initial fringe set, F,

from the ghost nodes on borders with completed chunks. After fast marching a

single chunk, we run a correction step based on the rollback step from [24]. The

details of this correction step, with the rest of our initial algorithm, are provided

below.

1. Load the chunk containing the start point. Run the standard fast marching

algorithm, as was described in Section 2.2.3, within this chunk.

2. Add the neighboring chunks to a chunk priority queue, with the cost de-

termined by the cost of their smallest ghost node. Loop until there are no

more chunks in the priority queue.

(a) Load the chunk from the front of the chunk priority queue.
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(b) For each ghost point g on the border with a completed chunk, add g

to set F.

(c) Run the standard fast marching algorithm starting at the loop —

step 3 from Section 2.2.3.

(d) Compare each border point b with its associated ghost point g in the

neighboring chunks. If any b’s cost label is less than g ’s cost label by

more than THRESHOLD amount, add the neighboring chunk to a

correction priority queue, with its value determined by the cost of the

b. If the chunk is already in the correction priority queue, update its

cost if b has a smaller cost.

(e) Run the correction algorithm below.

(f) Add any bordering chunks that haven’t been seen before to the chunk

priority queue. If necessary, update the cost of bordering chunks that

are already in the chunk priority queue.

The variable in the above algorithm, THRESHOLD, is a tunable value

than can significantly affect both the running time and the correctness of the

algorithm. The higher the threshold value, the less likely it is that the correction

algorithm will be run, which should affect the correctness of the result. The lower

the threshold value, the more likely it is that the correction algorithm will be run,

which will increase the running time of the algorithm. The correction algorithm

itself is described below.

1. Remove a completed chunk C from the correction priority queue.

(a) Pick the changed ghost node with the smallest cost label, s. Update

its value from the associated border point in the bordering chunk B.
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(b) For each point or ghost p in C with cost label less than or equal to

the cost label of s, move p from set I to set F.

(c) For each point or ghost p in C with cost label greater than the cost

label of s, move p from set I to set O.

(d) Run the standard fast marching algorithm within chunk C starting at

the loop — step 3 from Section 2.2.3. Whenever the algorithm checks

the value of a point that is on the border with B, check to see if B has

a smaller value. If so, copy the smaller value to the border point and

use it.

(e) Compare each border point b in chunk C with its associated ghost

point g in the neighboring chunks. If any b’s cost label is less than g ’s

cost label by more than THRESHOLD amount, add the neighboring

chunk to a correction priority queue, with its value determined by the

cost of the b. If the chunk is already in the correction priority queue,

update its cost if b has a smaller cost.

Steps 1b and 1c are effectively the rollback step from [24]. This correc-

tion algorithm runs until all completed chunks agree on their borders by at least

THRESHOLD amount. Also, it is important to note that the correction algo-

rithm tries to run “smaller” corrections first. This is to better conform to the

upwind nature of the fast marching algorithm. Making corrections arbitrarily

can adversely affect the correctness of the algorithm.

Unfortunately, early tests showed less than ideal results from this algorithm.

In fact, we often found that tuning THRESHOLD to a lower value would

actually increase the amount of error in our results. This was counterintuitive as

tuning it down leads to more corrections, which should lead to less error.
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Our hypothesis for why we are getting so much error in domain decomposition-

based fast marching is that the fast marching method is highly reliant on the

correct upwind propagation of information for correctness. Correct upwind prop-

agation is typically enforced by step 3a of the fast marching algorithm — picking

a globally smallest point. Domain decomposition fast marching picks locally

smallest points in each domain. Synchronization of access to the ghost nodes on

the borders, as well as the concurrent running of fast marching in each domain,

prevents any one domain from making too much progress based on an incorrect

smallest point. Small corrections can then be made when inconsistencies are de-

tected at the borders between domains. However, in our single processor version

of the algorithm, fast marching is allowed to make as much progress as possible

during both the initial run and in subsequent corrections. Hence, we are prop-

agating out a great deal of incorrect caloric data. Some of this cost data seems

to even be a smaller value than it should be, which can allow it to be picked up

by the correction algorithm at borders and propagated into neighboring chunks.

This would explain why much of the error that we saw was negative — meaning

that the caloric cost was less than it should have been.

To test our hypothesis we wrote a version of the domain decomposition-based

algorithm that found caloric costs using Dijkstra’s shortest path algorithm instead

of the fast marching method. Dijkstra’s shortest path algorithm is less complex

than the fast marching algorithm, and the way information propagates is much

simpler. A point’s value is only dependent on the value of its smallest neighbor.

If any of its neighbors change values, it is a simple task to make a correction. This

change then propagates out over the data in a straightforward way. Our tests

of the domain decomposition-based Dijkstra’s algorithm gave us the expected

results. Lowering the value of THRESHOLD lowers the error. Also, the error
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is bounded by the value of THRESHOLD.

The simplified problem with our domain decomposition-based fast marching

algorithm, then, seemed to be that fast marching was making too much progress

from incorrect data. Our solution is to limit how far information can propagate

within a chunk. We do this by using another tunable value, PROPAGATE,

which is the “distance” in caloric cost that fast marching is allowed to make

during the initial run and subsequent corrections in a chunk. The updated domain

decomposition-based fast marching algorithm is shown below.

1. Load the chunk containing the start point. Run the standard fast marching

algorithm, as was described in Section 2.2.3, within this chunk. Terminate

fast marching when it accepts a point with a cost label greater than or

equal to PROPAGATE.

2. Add the chunk to a chunk priority queue, with its cost determined by its

smallest fringe value. If fast marching reached any border points, add the

associated neighboring chunks to the chunk priority queue, with the cost

determined by the cost of their smallest ghost node.

(a) Load the chunk from the front of the chunk priority queue.

(b) If this is the first time that the chunk has been seen, then for each

ghost point g on the border with a completed chunk, add g to set

F. This creates its initial fringe. It should otherwise have an existing

fringe from its last run.

(c) Run the standard fast marching algorithm starting at the loop —

step 3 from Section 2.2.3. Terminate fast marching when it accepts a

point that is more than PROPAGATE calories greater than the first

point accepted in this run.
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(d) Compare each border point b in set I with its associated ghost point g

in the neighboring chunks. If any b’s cost label is less than g ’s cost label

by more than THRESHOLD amount, add the neighboring chunk to

a correction priority queue, with its value determined by the cost of

the b. If the chunk is already in the correction priority queue, update

its cost if b has a smaller cost.

(e) If fast marching didn’t finish in the chunk, then add the chunk back

to the chunk priority queue, with its cost determined by its smallest

fringe value. If fast marching reached border points on borders with

chunks that haven’t been seen yet, add the associated neighboring

chunks to the chunk priority queue, with the cost determined by the

cost of their smallest ghost node.

The updated correction algorithm doesn’t change much. It only needs to limit

the propagation of a correction. It is described below.

1. Remove a completed chunk C from the correction priority queue.

(a) Pick the changed ghost node with the smallest cost label, s. Update

its value from the associated border point in the bordering chunk B.

(b) For each point or ghost p in C with cost label less than or equal to

the cost label of s, move p from set I to set F.

(c) For each point or ghost p in C with cost label greater than the cost

label of s, move p from set I to set O.
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(d) Run the standard fast marching algorithm within chunk C starting at

the loop — step 3 from Section 2.2.3. Whenever the algorithm checks

the value of a point that is on the border with B, check to see if B has

a smaller value. If so, copy the smaller value to the border point and

use it. Terminate fast marching when it accepts a point that is more

than PROPAGATE calories greater than the first point accepted in

this run.

(e) Compare each border point b in chunk C with its associated ghost

point g in the neighboring chunks. If any b’s cost label is less than g ’s

cost label by more than THRESHOLD amount, add the neighboring

chunk to a correction priority queue, with its value determined by the

cost of the b. If the chunk is already in the correction priority queue,

update its cost if b has a smaller cost.

This algorithm does produce significantly less error than its predecessor. Tun-

ing PROPAGATE down will decrease the error as expected. Also, tuning

THRESHOLD down when PROPAGATE is low will decrease error. Unfor-

tunately, the error is still not bound by THRESHOLD.
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Chapter 4

Results

The previous work by Wood presented results and arguments as to the effec-

tiveness of caloric cost over other metrics, such as straightest path [1]. Therefore,

we will primarily focus on presenting an evaluation of our domain decomposition-

based fast marching algorithm presented in Section 3.2. We will also use our tools

to analyze a large portion of digital elevation data from Oregon in order to eval-

uate the effectiveness of our tools. The results of this evaluation will be used to

make proposals for future work.

4.1 Error and Performance Results for Domain

Decomposition-Based Fast Marching

Our goal for the modified domain decomposition fast marching tool was to be

able to run fast marching over very large data sets in less time than our standard

fast marching tool. This would hopefully be at a minimal cost to the accuracy

of the results. We performed our tests on five different data sources.
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• The Full Oregon DEM data set is the large DEM used in Section 4.2.

• Oregon DEM Part 1 though Oregon DEM Part 4 are each a quarter

of the Full Oregon DEM data set.

– Oregon DEM Part 1 and Oregon DEM Part 2 both use the same

quarter of the data, but have different starting points.

– Oregon DEM Part 3 and Oregon DEM Part 4 use different

portions of the data and have different starting points.

On each data set we performed standard fast marching and four different runs

of the domain decomposition-based fast marching.

• DD FM 1 uses a PROPAGATE value of 500 calories and a THRESHOLD

value of 5 calories.

• DD FM 2 uses a PROPAGATE value of 500 calories and a THRESHOLD

value of 0.5 calories.

• DD FM 3 uses a PROPAGATE value of 200 calories and a THRESHOLD

value of 5 calories.

• DD FM 4 uses a PROPAGATE value of 200 calories and a THRESHOLD

value of 0.5 calories.

All of these tests were performed on a 2.33 GHz Intel Core 2 Duo machine

with 2 GB of 667 MHz DDR2 SDRAM. The database cache was set to a size of

512 MB. For domain decomposition, chunk sizes were set to a maximum of 1024

x 1024 data points. For the timing tests we report wall clock time.

41



Figure 4.1: A chart of the timing results for each test. Below it is a
table of the actual timing values. DD FM tests take about a third of
the time of standard fast marching.

Figure 4.1 shows the running times for each data set and each fast march-

ing run. The domain decomposition-based fast marching method takes about a

third of the time to run when compared to the standard fast marching method

for all of our tests. Also, the time that domain decomposition-based fast march-

ing takes typically increases as PROPAGATE and THRESHOLD are tuned

down. This is expected because tuning THRESHOLD down causes more cor-

rections to be made, and tuning PROPAGATE down limits fast marching in

each chunk, which in turn will cause more jumping around between chunks. Mov-

ing between chunks more often means more loads and stores of chunk data from

and to the database.

With the variable values that we chose, we typically saw error that was less

than 200 calories in all of our tests, with the majority of points having negligible

error. Interestingly, this was true of the Full Oregon DEM as well as the
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Full DEM DEM DEM DEM
DEM Part 1 Part 2 Part 3 Part 4

DD FM 1
Ave Error 4.657903 0.667706 1.037725 0.653417 0.138821
Max Error 190.174835 148.558502 182.657288 148.489273 127.015396
DD FM 2
Ave Error 1.072422 0.220335 10.422381 0.216483 0.232800
Max Error 254.070190 114.325211 155.879028 214.480530 76.809616
DD FM 3
Ave Error 2.624293 0.620319 2.111316 0.581078 0.190194
Max Error 129.605209 63.288265 73.330414 71.396088 62.605042
DD FM 4
Ave Error 2.477251 0.065483 0.278318 0.321646 0.078015
Max Error 90.212952 99.823235 76.997459 109.255867 48.214836

Table 4.1: A table of the average and maximum error of each run of
the domain decomposition-based fast marching algorithm on each data
set. Averages and maximums are calculated using the absolute value
of the errors, so that negative and positive errors are treated alike.

DEM parts, even though the Full Oregon DEM contained four times as many

points. To put these results into perspective, paths of any interesting length in

out test data are typically tens of thousands of calories long. Table 4.1 shows

the maximum and average caloric error for each domain decomposition-based

fast marching run when compared to the results of the standard fast marching

method. Table 4.2 shows the distribution of error for each domain decomposition-

based fast marching run as averaged over the data sets. These results show that

a large majority of data points are only off by 0 to 5 calories when using domain

decomposition-based fast marching. For a more complete set of error results

for domain decomposition-based fast marching, please visit Appendix A. Finally,

Figure 4.2 plots the error distribution from Table 4.2.

The error that we see from our updated domain decomposition-based fast

marching algorithm is acceptable. What’s more, the timing results show us that
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DD FM 1 DD FM 2 DD FM 3 DD FM 4
[−25,−20) 1.856× 10−5 0 0 5.949× 10−8

[−20,−15) 3.51× 10−5 2.381× 10−5 1.0113× 10−6 5.017× 10−6

[−15,−10) 2.239× 10−5 5.849× 10−5 5.5125× 10−6 0.000119881
[−10,−5) 4.588× 10−5 0.000377471 0.000789052 0.000400839
[−5, 0) 11.18941863 16.65672127 6.174735998 11.4792977
[0, 5) 79.35249341 71.55092589 87.84330668 82.75579442
[5, 10) 6.046916197 0.882269741 3.335486835 4.154831922
[10, 15) 1.493236341 0.558730123 2.235106031 1.479255248
[15, 20) 0.447463753 8.243355836 0.36090583 0.09208019
[20, 25) 0.427769657 1.202950647 0.044258657 0.008795539
[25, 30) 0.749078264 0.490183319 0.002067759 0.004038844
[30, 35) 0.184073969 0.306134008 0.001283625 0.002098869
[35, 40) 0.041366121 0.029478125 0.000994654 0.020019196
[40, 45) 0.01255795 0.034328968 0.000386499 0.002224071
[45, 50) 0.005119227 0.009055742 0.000221208 0.000530247
[50, 55) 0.006156722 0.006173034 0.000135113 0.000153631
[55, 60) 0.010385611 0.014223209 9.956× 10−5 9.871× 10−5

[60, 65) 0.0053265 0.002824148 8.175× 10−5 7.753× 10−5

[65, 70) 0.001951592 0.002315669 7.376× 10−5 5.847× 10−5

[70, 75) 0.021723551 0.002948758 1.644× 10−5 4.29× 10−5

[75, 80) 0.000865403 0.001810657 1.071× 10−5 3.214× 10−5

[80, 85) 0.000730965 0.00095987 9.102× 10−6 2.072× 10−5

[85, 90) 0.000694364 0.000797001 6.13× 10−6 1.239× 10−5

[90, 95) 0.000519493 0.000612814 4.164× 10−6 7.277× 10−6

[95, 100) 0.000531474 0.000519997 3.212× 10−6 3.331× 10−6

[100, 105) 0.000305995 0.000508456 2.737× 10−6 2.776× 10−7

[105, 110) 0.00026023 0.000380782 2.558× 10−6 5.552× 10−7

[110, 115) 0.000202846 0.000344536 1.785× 10−6 0
[115, 120) 0.000160571 0.000212083 2.082× 10−6 0
[120, 125) 0.000131978 0.00012815 1.071× 10−6 0
[125, 130) 8.772× 10−5 9.518× 10−5 4.759× 10−7 0
[130, 135) 7.065× 10−5 7.241× 10−5 0 0

Table 4.2: A partial table of the data visualized in Figure 4.2. The
left column lists caloric error ranges. The other four columns list the
percentages of points that fall into those error ranges. This data is
averaged over the data sets. For a more complete set of error results,
please see Appendix A.
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Figure 4.2: A graph of the percentage of points in the data sets that
fall into the given caloric error ranges. This data is averaged from all
data sets. This makes it clear that the majority of the points are only
0 to 5 calories off from the correct value. This is a visualization of the
data in Table 4.2.

we still have leeway to tune the values of PROPAGATE and THRESHOLD

even further down and get even better accuracy. Finally, Figure 4.3 shows a

visualization of the error for a single test run. All other visualizations show a

similar pattern. Error in these images can be seen as streaks that move outward

from the start point along the upwind direction, showing how information was

propagated in the data.

Finally, we should note that least caloric paths generated from our data were

often the same or similar enough as to be indistinguishable by the naked eye. Few

paths in the domain decomposition-based fast marching data differed visually

from the same path in the normal fast marching data, and even these were only

off by a small amount. Figure 4.4 and 4.5 illustrate the similarity between a

path generated from standard fast marching data and a path with the same
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Figure 4.3: A visualization of the propagation of caloric error. Lighter
green indicates more error than darker green. Notice that the error
propagates outward in “streaks” from the start point, following the
propagation of information in the data.

Figure 4.4: An energetically optimal trail found using the data pro-
duced by the standard fast marching method.
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Figure 4.5: An energetically optimal trail found using the data pro-
duced by the domain decomposition-based fast marching method. This
image uses the same DEM and the same start and end points as in Fig-
ure 4.4. The trails are so similar that we have to highlight the section
of the trails that are not the same to make it more noticeable.

Figure 4.6: The same trail and data as from Figure 4.5, but showing
a visualization of the error in the caloric cost data. The section where
this trail differs from the trail in Figure 4.4 lies in an area of high error.
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start and end point generated from domain decomposition-based fast marching

data. To generate these figures, we had to find a path that would traverse an

area of high error, which can be seen in Figure 4.6. The length of the trail in

the standard fast marching data is 23,459.66 calories. The length in the domain

decomposition-based fast marching data is 23,469.04 calories. Differences in least

caloric paths should become even less noticeable as the values of PROPAGATE

and THRESHOLD are tuned down.

4.2 Analysis of Oregon DEM

To evaluate the effectiveness of our tools, we downloaded a large portion of

digital elevation data, mostly covering Oregon, from the USGS Seamless Data

Distribution website [27]. A screenshot of this website showing the approximate

extents of our digital elevation data is shown in Figure 4.7. This data came as

fourteen smaller DEMs which, when stitched back together, contained 23951 x

14037 data points at a 30 meter resolution. The particular region of Oregon was

chosen with the hopes that we could compare a lowest energetic cost path with

the Oregon Trail [28], the historical trail used by Western pioneers in the 19th

century.

Figures 4.8 through 4.10 show multiple views of the digital elevation data,

caloric costs, and the least caloric path given a start point and end point that

approximate the start and end points of the Oregon Trail in the state of Oregon.

The caloric length of this trail is 44,006.45 calories. Overlaid on these images is

an approximate tracing of the real Oregon Trail, including a common cutoff, ter-

minating at Oregon City [29]. The figures show that both routes travel through

the central-Northern part of the state and avoid mountain ranges. The energeti-
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Figure 4.7: A screenshot of the USGS Seamless Data Distribution
website used to download our large Oregon data set. The red outline
shows the approximate extents of this data.
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Figure 4.8: The elevation view of our Oregon data showing the least
caloric path between the start and end points of the Oregon Trail in
Oregon. The trail to the North is an approximate tracing of the real
Oregon Trail [29].

cally optimal path does vary from the historical route at the first portion of the

trail. In Figures 4.11 and 4.12 we calculate an energetically optimal trail from

the start point to a way-point on the Oregon Trail, and from the way-point to

the end point. These figures show a much stronger correlation with the histori-

cal trail. The caloric length of the path through the way-point is approximately

45,870 calories — less than 2,000 calories longer than the energetically optimal

trail. These examples do much to demonstrate the validity of our algorithm and

methods. However, there is a disparity between the paths, and we would like to

suggest a number of possible factors contributing to it and offer recommendations

for future changes to address these issues.

First, the Oregon Trail is not necessarily going to be a lowest human caloric

path. The trail was commonly traveled by wagon, so a better metric might have
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Figure 4.9: The energetic isocontour view of our Oregon data. Other-
wise the same as Figure 4.8.

Figure 4.10: The energetic gradient view of our Oregon data. Other-
wise the same as Figure 4.8.
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Figure 4.11: The energetically optimal path from the start point to
a nearby point on the Oregon Trail. Overlaid on this image is an
approximate tracing of the real Oregon Trail [29].

Figure 4.12: The energetically optimal path from a point near to the
actual Oregon Trail to the end point of the trail. This comparison is
similar to that of Figure 4.11.
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Figure 4.13: A graph of the elevations, in meters, along the energeti-
cally optimal path shown in Figures 4.8 through 4.10.

something to do with how easy it would be to navigate with a wagon, such as

flatness. Figure 4.13 shows a graph of the elevations along the least caloric path

shown in Figures 4.8 through 4.10. The maximum elevation along this path is

1,749.08 meters, and the minimum is 9.02 meters. The path starts at 665.37

meters and ends at 27.10 meters. The maximum and minimum elevations in the

entire digital elevation model are 3,746.36 meters and -0.95 meters, respectively.

We can see that the least caloric path is not necessarily going to be very flat,

but may involve many elevation changes. Figures 4.8 through 4.12 show that

energetically optimal paths are more direct than the historical trail. They travel

through elevation changes that the real Oregon Trail avoids. A future version of

the analysis tool might give the user a choice of a multitude of metrics, such as

energetic cost, flatness, or straightness, allowing them to mix and match varying

amounts of these metrics.

Second, the caloric cost is currently being calculated everywhere using the

terrain factor for a treadmill (see Equations 2.1 through 2.4). A more accurate

version of the tool might read in terrain types — such as rocky, grassy, and

wetland — from some other GIS data source, and use that data to set appropriate
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terrain factors where possible.

Another form of impedance that is currently ignored is the presence of streams,

rivers, and bodies of water. As we can see in Figure 4.7, this form of GIS data is

readily available. One approach that a future version of the analysis tool might

take would be to read in GIS data for bodies of water and use that information

to set the terrain factor artificially high for those points. This would restrict

the crossing of streams, rivers, and bodies of water. However, this is not exactly

what we want. We might want to discourage the crossing of bodies of water with

a moderate increase in the terrain factor, but what we are really trying to stop

is traveling of rivers and large lakes as if they were lowest calorie shortcuts. A

smarter approach would be to use an anisotropic terrain factor where the mag-

nitude of the terrain factor in a given direction is proportional to the distance

one would have to travel in that direction in order to reach land again. An

anisotropic terrain factor would not affect our algorithm, as it already expects

anisotropy from the slope of the terrain.

Finally, there are a handful of other impedance factors that are currently

ignored, such as temperature, the presence of eatable flora and fauna, and the

presence of snow. These factors may or may not have GIS data that could be

used, and the translation to terrain factor may not be easily defined. Therefore,

it might be worthwhile to give the user the ability to hand-edit the terrain factor

data, or possibly some other impedance factor data, to give the user the ability

to make certain relevant areas harder or easier to traverse. It would not be hard

to modify the cepviewer application in its current form to give it a terrain factor

“painting” mode, where the user would use his mouse to paint higher or lower

terrain factors onto the terrain data.
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Chapter 5

Conclusions and Future Work

The work presented here is another step toward what could be a powerful set

of tools for archaeologists, anthropologists, and historians. It further develops

and improves upon prior work for the analysis of digital elevation data using a

caloric cost metric. Our tools can handle multiple gigabytes of digital elevation

data and can create more accurate discrete energetic geodesics through the use of

the fast marching method. We have also attempted to address performance issues

by developing a modified domain decomposition-based fast marching algorithm

that is able to run in significantly less time at an acceptable cost to accuracy.

Tools providing human-centered metrics for analyzing nearness on a terrain,

where these metrics might include energetically optimal travel as well as other

metrics such as straightness or flatness, could provide for intriguing research in

early human travel and better concepts of geographic nearness. It is important

that these tools be able to handle realistically large amounts of data; particularly

if, in the future, these tools must analyze more than just digital elevation data.

Our tools work towards this goal by using a database library to help handle

gigabytes of data. Future revisions of these tools might use a custom data library
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that can take better advantage of spatial locality and could do some form of

prefetching1.

Our goal of supporting larger quantities of data also drove us to use a more

accurate algorithm for finding caloric costs — fast marching. We developed a do-

main decomposition-based fast marching algorithm to try to address the perfor-

mance aspect of working with large quantities of data. Being that this algorithm

is based off of work for parallelized fast marching [24], future work might see an

even faster parallelized version of the cepfm tool. This parallelization would have

to be across multiple machines, or some other non-shared memory solution, as it is

currently memory that is our bottleneck. The multi-core shared memory machine

that we performed our tests on, for example, would not benefit from paralleliza-

tion across multiple threads, as each thread would be fighting the other for use of

memory. Also, a goal that we never reached for the domain decomposition-based

fast marching algorithm was guaranteed error bounds. However, each improve-

ment of the algorithm delivered more accurate results. Further research and work

on this algorithm could see a version of the algorithm that allows one to guarantee

error bounds.

Finally, we initially attempted to develop a viewer application capable of

displaying our data in a three dimensional perspective view. Developing this

application quickly became more work than we had time for, so we scrapped it

and went to a top-down orthographic view. A future viewing application might

come back to the initial Google Earth-like concept [30], as it would have been a

more interesting, intuitive, and fun way to view the data.

1There are a number of places in our tools where we simply iterate over all of the data,
performing some operation on it. A simple prefetching mechanism would boost performance in
these places. We find it doubtful that the Berkeley DB uses any such prefetching mechanisms.
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Appendix A

More Caloric Error Results for

Domain Decomposition-Based

Fast Marching

The tables in Figures A.1 through A.5 list the caloric error for individual runs

of the domain decomposition-based fast marching algorithms on each data set.

Figure A.6 shows the full table of averaged error for all data sets.
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DD FM 1 DD FM 2 DD FM 3 DD FM 4
[-50, -45) 1.9631E-05 0 0 0
[-45, -40) 0.00010202 0 0 0
[-40, -35) 2.2011E-05 0 0 0
[-35, -30) 1.9036E-05 0 0 0
[-30, -25) 3.3313E-05 0 0 0
[-25, -20) 9.2802E-05 0 0 2.9744E-07
[-20, -15) 4.878E-05 1.6359E-05 5.0565E-06 5.6514E-06
[-15, -10) 3.0042E-05 7.7335E-05 1.7847E-05 1.3682E-05
[-10, -5) 6.0083E-05 0.00015794 0.00379536 0.00101457
[-5, 0) 4.84855322 5.46513587 3.63603605 3.85589821
[0, 5) 66.3753037 91.046753 79.3901147 71.5847237
[5, 10) 15.1489226 1.17892796 6.81750811 17.0517832
[10, 15) 6.88751164 1.36042696 9.84826966 7.27061999
[15, 20) 0.78405846 0.50380162 0.25686779 0.11924027
[20, 25) 1.10945506 0.07107373 0.03713026 0.02500683
[25, 30) 3.69314221 0.31864022 0.00386942 0.00439768
[30, 35) 0.83944689 0.01873348 0.00203212 0.00393337
[35, 40) 0.17840353 0.00895419 0.00238608 0.07645742
[40, 45) 0.02414306 0.00902171 0.00057228 0.00490363
[45, 50) 0.01278792 0.0051746 0.00033432 0.00170047
[50, 55) 0.01939113 0.00329863 0.00028138 0.00015883
[55, 60) 0.04355024 0.00232124 0.00021743 7.436E-05
[60, 65) 0.01972872 0.00155265 0.00016449 4.3427E-05
[65, 70) 0.00333581 0.00129625 0.00011065 1.3385E-05
[70, 75) 0.00293902 0.00102231 6.6924E-05 5.0565E-06
[75, 80) 0.00163712 0.00068798 5.354E-05 3.8667E-06
[80, 85) 0.00143545 0.00066597 4.5509E-05 8.9233E-07
[85, 90) 0.00158834 0.00063028 3.0637E-05 8.9233E-07
[90, 95) 0.00103183 0.00037418 2.0821E-05 2.9744E-07
[95, 100) 0.00143456 0.00025015 1.6062E-05 0
[100, 105) 0.00048899 0.00018412 1.3682E-05 0
[105, 110) 0.00034622 0.00015645 1.279E-05 0
[110, 115) 0.00025639 0.00011957 8.9233E-06 0
[115, 120) 0.00016716 9.1612E-05 1.041E-05 0
[120, 125) 0.00012968 6.7519E-05 5.354E-06 0
[125, 130) 9.5776E-05 5.5324E-05 2.3795E-06 0
[130, 135) 8.1202E-05 5.116E-05 0 0
[135, 140) 7.3468E-05 4.1344E-05 0 0
[140, 145) 4.5509E-05 3.0637E-05 0 0
[145, 150) 2.4093E-05 2.7365E-05 0 0

Figure A.1: The caloric error results for the Full Oregon DEM data
set. The data represents percentage of points in a given caloric error
range.
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DD FM 1 DD FM 2 DD FM 3 DD FM 4
[-50, -45) 0 0 0 0
[-45, -40) 0 0 0 0
[-40, -35) 0 0 0 0
[-35, -30) 0 0 0 0
[-30, -25) 0 0 0 0
[-25, -20) 0 0 0 0
[-20, -15) 0 0 0 0
[-15, -10) 0 0 5.5519E-06 0
[-10, -5) 0 0 7.7726E-05 2.7759E-06
[-5, 0) 18.5366175 30.8714156 9.25866999 22.6328294
[0, 5) 79.190072 67.8657778 86.2093605 77.2497025
[5, 10) 1.12167209 0.15817734 4.46136622 0.0759234
[10, 15) 0.21546167 1.01477334 0.06133166 0.01457231
[15, 20) 0.77637545 0.02945552 0.00335889 0.01572155
[20, 25) 0.09087601 0.01229881 0.00377528 0.00200839
[25, 30) 0.01668619 0.0085041 0.00084111 0.00743536
[30, 35) 0.02086676 0.01182412 0.00081613 0.00039141
[35, 40) 0.00986292 0.00540476 0.00020126 0.00032479
[40, 45) 0.00482875 0.01016411 0.00010965 0.00029009
[45, 50) 0.00352961 0.00372393 5.5519E-05 0.00022763
[50, 55) 0.00416669 0.00243867 1.6656E-05 0.00011381
[55, 60) 0.00230958 0.00151289 8.3278E-06 9.9934E-05
[60, 65) 0.00174884 0.00108678 5.5519E-06 9.577E-05
[65, 70) 0.00120337 0.00090635 0 7.3562E-05
[70, 75) 0.00085499 0.00070648 0 6.1071E-05
[75, 80) 0.00064818 0.00098407 0 4.7191E-05
[80, 85) 0.00049967 0.00043999 0 3.1923E-05
[85, 90) 0.00046913 0.00025816 0 1.6656E-05
[90, 95) 0.00031785 9.1606E-05 0 1.6656E-05
[95, 100) 0.00018321 2.4983E-05 0 1.388E-05
[100, 105) 0.00017488 2.082E-05 0 0
[105, 110) 0.00016656 6.9399E-06 0 0
[110, 115) 0.00015823 2.7759E-06 0 0
[115, 120) 0.0001152 0 0 0
[120, 125) 7.9114E-05 0 0 0
[125, 130) 3.3311E-05 0 0 0
[130, 135) 1.1104E-05 0 0 0
[135, 140) 4.1639E-06 0 0 0
[140, 145) 2.7759E-06 0 0 0
[145, 150) 4.1639E-06 0 0 0

Figure A.2: The caloric error results for the Oregon DEM Part 1 data
set. The data represents percentage of points in a given caloric error
range.
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DD FM 1 DD FM 2 DD FM 3 DD FM 4
[-50, -45) 0 0 0 0
[-45, -40) 0 0 0 0
[-40, -35) 0 0 0 0
[-35, -30) 0 0 0 0
[-30, -25) 0 0 0 0
[-25, -20) 0 0 0 0
[-20, -15) 0 0 0 1.9432E-05
[-15, -10) 0 0 4.1639E-06 0.00057184
[-10, -5) 0.00010132 1.6656E-05 3.7475E-05 0.00040945
[-5, 0) 12.2561849 10.9243351 4.1264738 8.47596123
[0, 5) 78.6509924 37.8859892 88.6251753 89.5215325
[5, 10) 7.38000963 0.57647987 4.96199902 1.90457933
[10, 15) 0.14529419 0.20649122 0.84264412 0.03915189
[15, 20) 0.59599196 40.5829389 1.42183469 0.01434468
[20, 25) 0.72711636 5.84896938 0.01326623 0.00664838
[25, 30) 0.01853358 2.09155151 0.00309934 0.00513966
[30, 35) 0.04521593 1.47281764 0.00214442 0.00432075
[35, 40) 0.01443351 0.11488097 0.00133662 0.0220618
[40, 45) 0.03008288 0.13590873 0.00066345 0.0049731
[45, 50) 0.0061265 0.02742631 0.00042194 0.00011381
[50, 55) 0.00513688 0.01973278 0.00021652 6.2459E-05
[55, 60) 0.00442069 0.06342333 0.0002082 4.1639E-05
[60, 65) 0.00391685 0.00892327 0.00021236 2.9147E-05
[65, 70) 0.00381137 0.00762551 0.00024983 3.3311E-05
[70, 75) 0.10400761 0.01167839 1.2492E-05 4.1639E-06
[75, 80) 0.00135605 0.00605155 0 1.388E-06
[80, 85) 0.00107013 0.00268989 0 0
[85, 90) 0.00096186 0.00208612 0 0
[90, 95) 0.00085915 0.00194038 0 0
[95, 100) 0.00070509 0.0017766 0 0
[100, 105) 0.00059266 0.00188903 0 0
[105, 110) 0.00050939 0.00132412 0 0
[110, 115) 0.00042888 0.00138242 0 0
[115, 120) 0.00037475 0.00075228 0 0
[120, 125) 0.00031646 0.00037614 0 0
[125, 130) 0.00026371 0.00022763 0 0
[130, 135) 0.00023734 0.00011659 0 0
[135, 140) 0.00019432 8.3278E-05 0 0
[140, 145) 0.00017072 5.9683E-05 0 0
[145, 150) 0.00014157 4.0251E-05 0 0

Figure A.3: The caloric error results for the Oregon DEM Part 2 data
set. The data represents percentage of points in a given caloric error
range.
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DD FM 1 DD FM 2 DD FM 3 DD FM 4
[-50, -45) 0 0 0 0
[-45, -40) 0 0 0 0
[-40, -35) 0 0 0 0
[-35, -30) 0 0 0 0
[-30, -25) 0 0 0 0
[-25, -20) 0 0 0 0
[-20, -15) 0.00012769 0.00010271 0 0
[-15, -10) 8.189E-05 0.00021514 0 1.388E-05
[-10, -5) 6.8011E-05 0.00171276 3.4699E-05 0.0005774
[-5, 0) 10.8006211 21.6311807 6.96897729 10.1164249
[0, 5) 82.5395222 77.5017178 92.1988397 87.7894017
[5, 10) 6.21413899 0.4351289 0.12617489 1.70093484
[10, 15) 0.11835367 0.15426603 0.41417748 0.06640747
[15, 20) 0.07413431 0.08842763 0.12059525 0.30880827
[20, 25) 0.20680351 0.07592062 0.16598884 0.00936186
[25, 30) 0.01301362 0.02726947 0.00205559 0.00270238
[30, 35) 0.01378672 0.02319855 0.00123946 0.00144349
[35, 40) 0.00363787 0.01565354 0.00088969 0.00099518
[40, 45) 0.00338804 0.01507059 0.00052327 0.00084944
[45, 50) 0.0028842 0.00796695 0.00027065 0.00058295
[50, 55) 0.00186543 0.00484402 0.00014435 0.00043305
[55, 60) 0.00144904 0.00354765 5.5519E-05 0.00027759
[60, 65) 0.00110482 0.00238037 2.2208E-05 0.0002193
[65, 70) 0.0012811 0.00171553 8.3278E-06 0.00017211
[70, 75) 0.00069537 0.00132829 2.7759E-06 0.00014435
[75, 80) 0.00059405 0.00132829 0 0.00010826
[80, 85) 0.00056074 0.0010035 0 7.0787E-05
[85, 90) 0.00037753 0.00101044 0 4.4415E-05
[90, 95) 0.00031923 0.0006579 0 1.9432E-05
[95, 100) 0.00026927 0.00054825 0 2.7759E-06
[100, 105) 0.00021514 0.00044831 0 1.388E-06
[105, 110) 0.00023179 0.00041639 0 2.7759E-06
[110, 115) 0.00013463 0.00021791 0 0
[115, 120) 0.00012075 0.00021652 0 0
[120, 125) 0.00012214 0.00019709 0 0
[125, 130) 4.1639E-05 0.00019293 0 0
[130, 135) 2.3596E-05 0.00019432 0 0
[135, 140) 2.082E-05 0.00020681 0 0
[140, 145) 6.9399E-06 0.00015962 0 0
[145, 150) 4.1639E-06 0.00013463 0 0

Figure A.4: The caloric error results for the Oregon DEM Part 3 data
set. The data represents percentage of points in a given caloric error
range.
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DD FM 1 DD FM 2 DD FM 3 DD FM 4
[-50, -45) 0 0 0 0
[-45, -40) 0 0 0 0
[-40, -35) 0 0 0 0
[-35, -30) 0 0 0 0
[-30, -25) 0 0 0 0
[-25, -20) 0 0 0 0
[-20, -15) 0 0 0 0
[-15, -10) 0 0 0 0
[-10, -5) 0 0 0 0
[-5, 0) 9.50511649 14.3915391 6.88352285 12.3153747
[0, 5) 90.0065768 83.4543916 92.7930432 87.6336117
[5, 10) 0.3698377 2.06263464 0.31038594 0.04093885
[10, 15) 0.09956053 0.05769306 0.00910724 0.00552459
[15, 20) 0.0067586 0.01215548 0.00187253 0.00228618
[20, 25) 0.00459734 0.00649069 0.00113268 0.00095223
[25, 30) 0.00401574 0.00495131 0.00047334 0.00051914
[30, 35) 0.00105356 0.00409624 0.000186 0.00040532
[35, 40) 0.00049277 0.00249717 0.00015963 0.0002568
[40, 45) 0.00034702 0.0014797 6.3852E-05 0.00010411
[45, 50) 0.0002679 0.00098693 2.3597E-05 2.6374E-05
[50, 55) 0.00022348 0.00055107 1.6657E-05 0
[55, 60) 0.0001985 0.00031093 8.3285E-06 0
[60, 65) 0.00013326 0.00017768 4.1643E-06 0
[65, 70) 0.00012632 3.4702E-05 0 0
[70, 75) 0.00012076 8.3285E-06 0 0
[75, 80) 9.1614E-05 1.3881E-06 0 0
[80, 85) 8.8838E-05 0 0 0
[85, 90) 7.4957E-05 0 0 0
[90, 95) 6.9404E-05 0 0 0
[95, 100) 6.524E-05 0 0 0
[100, 105) 5.83E-05 0 0 0
[105, 110) 4.7195E-05 0 0 0
[110, 115) 3.609E-05 0 0 0
[115, 120) 2.4986E-05 0 0 0
[120, 125) 1.2493E-05 0 0 0
[125, 130) 4.1643E-06 0 0 0
[130, 135) 0 0 0 0
[135, 140) 0 0 0 0
[140, 145) 0 0 0 0
[145, 150) 0 0 0 0

Figure A.5: The caloric error results for the Oregon DEM Part 4 data
set. The data represents percentage of points in a given caloric error
range.
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DD FM 1 DD FM 2 DD FM 3 DD FM 4
[-50, -45) 3.9262E-06 0 0 0
[-45, -40) 2.0405E-05 0 0 0
[-40, -35) 4.4021E-06 0 0 0
[-35, -30) 3.8073E-06 0 0 0
[-30, -25) 6.6627E-06 0 0 0
[-25, -20) 1.856E-05 0 0 5.9488E-08
[-20, -15) 3.5295E-05 2.3814E-05 1.0113E-06 5.0166E-06
[-15, -10) 2.2386E-05 5.8494E-05 5.5125E-06 0.00011988
[-10, -5) 4.5883E-05 0.00037747 0.00078905 0.00040084
[-5, 0) 11.1894186 16.6567213 6.174736 11.4792977
[0, 5) 79.3524934 71.5509259 87.8433067 82.7557944
[5, 10) 6.0469162 0.88226974 3.33548684 4.15483192
[10, 15) 1.49323634 0.55873012 2.23510603 1.47925525
[15, 20) 0.44746375 8.24335584 0.36090583 0.09208019
[20, 25) 0.42776966 1.20295065 0.04425866 0.00879554
[25, 30) 0.74907826 0.49018332 0.00206776 0.00403884
[30, 35) 0.18407397 0.30613401 0.00128363 0.00209887
[35, 40) 0.04136612 0.02947812 0.00099465 0.0200192
[40, 45) 0.01255795 0.03432897 0.0003865 0.00222407
[45, 50) 0.00511923 0.00905574 0.00022121 0.00053025
[50, 55) 0.00615672 0.00617303 0.00013511 0.00015363
[55, 60) 0.01038561 0.01422321 9.956E-05 9.8706E-05
[60, 65) 0.0053265 0.00282415 8.1754E-05 7.7529E-05
[65, 70) 0.00195159 0.00231567 7.3762E-05 5.8473E-05
[70, 75) 0.02172355 0.00294876 1.6438E-05 4.2928E-05
[75, 80) 0.0008654 0.00181066 1.0708E-05 3.2141E-05
[80, 85) 0.00073097 0.00095987 9.1017E-06 2.072E-05
[85, 90) 0.00069436 0.000797 6.1273E-06 1.2393E-05
[90, 95) 0.00051949 0.00061281 4.1642E-06 7.2769E-06
[95, 100) 0.00053147 0.00052 3.2124E-06 3.3311E-06
[100, 105) 0.000306 0.00050846 2.7365E-06 2.7759E-07
[105, 110) 0.00026023 0.00038078 2.558E-06 5.5519E-07
[110, 115) 0.00020285 0.00034454 1.7847E-06 0
[115, 120) 0.00016057 0.00021208 2.0821E-06 0
[120, 125) 0.00013198 0.00012815 1.0708E-06 0
[125, 130) 8.7721E-05 9.5176E-05 4.7591E-07 0
[130, 135) 7.0649E-05 7.2413E-05 0 0
[135, 140) 5.8554E-05 6.6286E-05 0 0
[140, 145) 4.5189E-05 4.9987E-05 0 0
[145, 150) 3.4799E-05 4.045E-05 0 0

Figure A.6: The caloric error results averaged over all data sets. The
data represents percentage of points in a given caloric error range.
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