
Abstract

This project implements a triangular mesh simplification algorithm based on the work of Garland and

Heckbert[2]. Using a system that prioritizes edges for removal based on maintaining the model’s shape,

the program can transform high facecount models into simpler approximations. Ultimately, these

simplified meshes are intended to be used as input to a physics engine, providing a manageable model

for the physical interactions of mesh shapes.

Introduction and Motivation

Display of three-dimensional models in real-time is often constrained by the number of triangles present

in any particular scene. Though graphics coprocessors have increased rendering performance

dramatically, the largest scenes can still be problematic even for modern systems. Often, a large number

of polygons are unnecessary, as the model occupies an insignificant portion of the physical screen space,

due to the distance from the viewing camera. Moreover, simpler approximations of models may be

needed for lower-performance systems, or for non-visible computations made using general geometry

(such as computing object physics). As a result, model simplification provides a way to service these

needs, providing a close approximation to the original model using much fewer polygons.

Previous Work

In 1976, Dr James Clark presented the idea of simplifying geometric detail to increase performance

when rendering detailed 3D surfaces[1]. His description of hierarchically displaying variable levels of

detail, using low-polygon models for objects that are perceptually distant from the viewer, set in motion

the idea of object simplification. Early approaches to simplification involved an artist recreating the

model at various levels of detail. However, the need for automated simplification became important as

the decreasing cost of graphics coprocessors made the cost of hiring an artist more expensive relative to

the overall project cost.

To meet this need, a number of solutions were proposed in the early 1990s. For example, the idea of

“vertex decimation” was put forth as a means to preserve topology while simultaneously reducing the

total complexity of the model[6]. In its original form, the average of all centroids surrounding a target

vertex was compared with the target vertex. If the distance between these two points was less than a

certain threshold, the vertex was removed, and the resulting hole filled in with replacement triangles.

Though this was a fast method for simplification, the average of centroids did not preserve overall detail

as well as it could.

Another method for simplification that came about at roughly the same time as vertex decimation is

“vertex clustering”, which simplified vertices in a 3D grid’s cubes to the most “important” vertex[5].

Importance is defined as being attached to a long edge or being part of a sharp curve; ideally, this

preserves features of the model to be simplified, but, in practice, the clustering of vertices without

respect to their attached faces cannot guarantee topological consistency.

To produce simpler meshes that closely maintained topology, Hoppe et al. created a mesh optimization

algorithm that used an “energy function” to determine how to best fit a small number of faces that most

closely matched the input mesh[3]. Though the results were accurate, they were slow in relation to

other simplification algorithms. Addressing the issue of speed-versus-quality, Garland et al. presented an

algorithm for mesh reduction while minimizing the total mesh error, using a set of squared distances

from the planes surrounding each vertex[2]. This algorithm produced high-performance, high-quality

renders that had previously been unattainable, and is still the basis for most modern simplification

techniques.

In the method outlined by Garland, each Face has a “fundamental error quadric” computed from its

normal vector and distance from a common Vertex. The Face’s quadric is added to each Vertex’s

quadric, giving a summation of planes around the Vertex. Between any two Vertex objects shared by a

common Edge, a “best fit” point for contraction of that edge is found, first by attempting to solve the

gradient for a minimized value, then using best fit along the line, then using the midpoint, stopping

when one of the three methods succeeds.

Algorithm

Model Import and Internal Representation

Models are imported into the application and stored using a fully

connected mesh structure, as shown in Figure 1. Each arrow

represents a bidirectional pointer, where each object has a

pointer to the other. The objects are called Vertex, Face, and

Edge. A Face contains three pointers to Edge objects, and three

pointers to Vertex objects. An Edge contains two pointers to Face

objects and two pointers to Vertex objects. A Vertex object

contains an STL vector for both Face and Edge objects surrounding it.

Parsing a file into the application is handled by a factory class called MeshParser; it chooses format to

parse based on file extension. For the simple model format (SMF, extension .m), two model constructs

are currently supported: Vertex and Face.

Models returned by MeshParser support the IMesh interface, which provides common functionality for

all meshes. This includes the ability to add vertices and faces, as well as functions to get iterators to the

Figure 1 Internal Model Representation

beginning and end of the Vertex, Face, and Edge lists. The interface also enumerates common “draw

modes” for the model, such as faces, edges, vertices, lit, and shading.

Edge Collapse

Removal of an edge from the mesh structure is a multi-step process

that requires updating all attached Vertex and Triangle objects. In

Figure 2, the center (green) Edge is being collapsed. Stages of the

collapse are as follows (visualization of this process shown in Figure

3).

The Edge::Collapse() function marks the edge as removed, chooses

a vertex to be the new common Vertex, then calls Face::Remove(Vertex* v) on each non-NULL Face,

passing the selected Vertex as a parameter. This Vertex is needed to ensure the structure remains

consistent, with surrounding Faces referencing the correct Vertex. Each Face is marked removed and the

surrounding Edges are iterated through, looking for the one being collapsed. The remaining two edges

are checked for the passed-in Vertex, and the Edge not containing that Vertex is remapped.

The Edge::RemapTo(Edge* eNew, Face* fOld) adjusts the pointers around both Edges. To perform this

action, the Edge gets the “left” and “right” Face straddling the removed Face. If both are NULL, eNew is

removed; otherwise, the pointer to fOld is changed to the “right” Face (this choice is arbitrary, as “left”

and “right” are used for simplicity based on the above diagram, in reality fOld is changed to the Face not

containing the chosen Vertex). If the “right” Face exists, Face::RemapEdge(Edge* eOld, Edge* eNew) is

called, remapping this Edge to eNew.

After Face::Remove(Vertex* v) returns into Edge::Collapse(), the Vertex being kept has its position set

to the computed location. Then, the Vertex along the collapsed edge that is not being kept is remapped

Figure 2 Edge Collapse Visualization

to the Vertex being kept. The Vertex::RemapTo(Vertex* vNew) function adds the computed cost and

the normal vector to vNew, then iterates through all Edges and Faces around it, remapping those that

aren’t removed to point to vNew. Finally, all Edges around vNew have their cost recomputed, as it has

most likely changed since the remap.

Figure 3 Visualization of an Edge Collapse

Results

Tests were run on an Intel Core 2 Duo at 3Ghz with 3.5Gb of addressable memory. No simplification

took longer than 10 seconds, but no specific timing data is provided, as the overall speed was more than

2. Mark the Edge as removed

3. Remove non-NULL Faces,
passing a Vertex to be used as
the “new” Vertex

4. Mark the Face as removed

5. Find the Edge removed in Step 1

6. Find the Edge containing the
new Vertex passed in at Step 2

7. Remap the Edge containing
the new Vertex over the other
non-removed Edge

8. Find the Faces opposite the
Edges being remapped

9. Change the pointer on the
Edge containing new Vertex to
point at “right” Face

10. If “right” Face is not NULL,
change pointer to Edge
containing new Vertex

11. Add normal and quadrics
from old Vertex to new Vertex;
move new Vertex to previously
computed “best” position

12. Remap old Vertex to new
Vertex by alerting all
surrounding Edges and Faces,
then removing the old Vertex

13. Compute updated costs for
all edges surrounding new
Vertex.

14. Edge collapse finished.

1. Edge collapse begins

adequate. Meshes tested included “gameguy”, “bunny”, “dragon”, “gargoyle”, and “fandisk”. All meshes

except “fandisk” could be simplified using the algorithm; fandisk’s structure caused a breakdown in

vertex placement, leading to the broken mesh seen below.

Figure 6 Original Gameguy Model - 42,712 faces

Figure 7 Simplified Gameguy Model - 500 faces

Figure 5 Simplified Bunny Model - 1,000 faces Figure 4 Original Bunny Model - 69,473 faces

Figure 8 Original Gargoyle Model - 2,000 faces

Figure 9 Simplified Gargoyle Model - 100 faces

Figure 10 Original Dragon Model - 10,000 faces

Figure 11 Simplified Dragon Model - 300 faces

 Future Work

Vertex Weighting

Though the current implementation provides a fast method to simplify models, it provides no ability to

designate parts of a model as more important. Allowing the user to set arbitrary cost values on vertices

or providing a flag to prevent collapse or movement of certain edges would allow for specialized feature

preservation. It is important to note that only weighting the Vertex objects can be permanent, as an

Edge object can be affected by the collapse of another Edge sharing a Vertex. By affixing the Vertex, all

edges associated with that Vertex also become affixed.

Collapse History

Tracking the stages of a collapse allows a user to test the effects of custom weights. It also would

provide a visualization of the stages of collapse, allowing a user to slide between collapse states. This

Figure 12 Fandisk Model - broken after attempted collapse

could be done using progressive meshes[4], as described by Hoppe et al., allowing for smooth, visible

transitions between mesh complexity states.

Mesh Inversion and Improved Feature Detection

The current method has no inversion prevention. This means that a mesh fold-over can occur, inverting

the normal on a face due to a poor choice of collapse. To fix this, Face normals should be saved and

compared before and after collapse. Any normal changing by too great of a value will cause the collapse

to be reverted and a new collapse to be chosen. Collapse history must be implemented before mesh

inversion prevention. Also, improved detection of notable architectural features can be added using

Face normals.

 References

[1] Clark, J. H. 1976. Hierarchical geometric models for visible surface algorithms. Commun.

[2] Garland, M. and Heckbert, P. S. 1997. Surface simplification using quadric error metrics. In
Proceedings of the 24th Annual Conference on Computer Graphics and interactive Techniques
International Conference on Computer Graphics and Interactive Techniques.

[3] Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. 1993. Mesh optimization. In
Proceedings of the 20th Annual Conference on Computer Graphics and interactive Techniques
SIGGRAPH '93.

[4] Hoppe, H. 1996. Progressive meshes. In Proceedings of the 23rd Annual Conference on Computer
Graphics and interactive Techniques SIGGRAPH '96.

[5] Low, K. and Tan, T. 1997. Model simplification using vertex-clustering. In Proceedings of the 1997
Symposium on interactive 3D Graphics (Providence, Rhode Island, United States, April 27 - 30, 1997).
SI3D '97.

[6] Schroeder, W. J., Zarge, J. A., and Lorensen, W. E. 1992. Decimation of triangle meshes. In
Proceedings of the 19th Annual Conference on Computer Graphics and interactive Techniques J. J.
Thomas, Ed. SIGGRAPH '92. Garland, M. and Heckbert, P. S. 1997. Surface simplification using
quadric error metrics. In Proceedings of the 24th Annual Conference on Computer Graphics and
interactive Techniques International Conference on Computer Graphics and Interactive Techniques.

