
CPE 101

Fall 2009

Project 4

Due Date

• Friday, November 13th by 11:59pm– remember, no late projects accepted!

Objectives

• To practice writing loops in C

• To practice using arrays in C.

• To practice using structures in C.

• To practice using arrays of structures in C.

• To practice writing functions in C.

• To practice using strings in C.

• To practice writing programs which use more complex data representations and

the control structures to do computations (such as searching) on those structures.

Ground Rules

• Your program must not use any global data.

• Your program must implement the required functions as specified.

• Your program must use the required functions appropriately.

• Your program must mimic the sample program’s behavior exactly and in all

cases.

Orientation

Against all bureaucratic stereotypes, the Social Security Administration provides a neat

web site showing the distribution of names chosen for kids over the last 100 years in the

US (http://www.ssa.gov/OACT/babynames/).

Every 10 years, the data gives the 1000 most popular boy and girl names for kids born in

the US. The data can be boiled down to a single text file as shown below. On each line

we have the name, followed by the rank of that name in 1900, 1910, 1920, ... 2000 (11

numbers). A rank of 1 was the most popular name that year, while a rank of 997 was not

very popular. A 0 means the name did not appear in the top 1000 that year at all. The

elements on each line are separated from each other by a single space. The lines are in

alphabetical order, although we will not depend on that.

...
Sam 58 69 99 131 168 236 278 380 467 408 466
Samantha 0 0 0 0 0 0 272 107 26 5 7
Samara 0 0 0 0 0 0 0 0 0 0 886
Samir 0 0 0 0 0 0 0 0 920 0 798
Sammie 537 545 351 325 333 396 565 772 930 0 0

Sammy 0 887 544 299 202 262 321 395 575 639 755
Samson 0 0 0 0 0 0 0 0 0 0 915
Samuel 31 41 46 60 61 71 83 61 52 35 28
Sandi 0 0 0 0 704 864 621 695 0 0 0
Sandra 0 942 606 50 6 12 11 39 94 168 257
...

We see that "Sam" was #58 in 1900 and is slowly moving down. "Samantha" popped on

the scene in 1960 and is moving up strong to #7. "Samir" barely appears in 1980, but by

2000 is up to #798.

You will be creating a program that allows the user to print out information about the

popularity of particular baby names over the last hundred years. Your program will read

in data from a file about the popularity of close to 4500 baby names. Your program will

then allow the user to search for specific baby names and then graph the popularity of

that name. For example the graph for Samantha would look like this:

Name: Samantha
Popularity by year:
1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
--
- - - - - ^ ^ * * *
--
Key: * = very popular, ^ = common, + = less common, - = rare

Your program will also allow the user to select to print out the entire list of data. See

the sample output files for details.

Note this program was inspired by the “NameSurfer” assignment from Stanford’s

nifty csc assignments (http://nifty.stanford.edu/)

Section 0: Develop Incrementally…

There are many reasonable ways to approach developing this program. Immediately

beginning to write code is not a recommended approach! The first and most

important thing to do is to understand what the program is required to do. To do so,

run the sample program, read the entire specification, discuss the project with your

instructor, as necessary, until you feel you understand what is required of the

program. You may want to write some pseudo-code for parts of this program before

you begin to write actual C code. Once you have done this much, the writing of the

code should be almost trivial (well, eventually it will be!).

When you do begin writing code, you should decide on some incremental steps you

can code and test. There are many reasonable ways to approach this problem

incrementally. One suggestion is to create a record to represent the data and make

sure you are comfortable printing the data in your record correctly, by making a

function to print out a name record. Next it would be good to focus on reading the

name data from the file into your record data structure. Test that you have read in the

data correctly using the print function you’ve developed

Section 1: Required Function Specifications…

You are required to develop the following functions. Think about what values these

functions will need to consume (their input) and their return type (output). Please

name them reasonable names.

Implement a function which prints out the popularity graph for a given baby

name. This function will allow for two different types of printing. One is just

straight numeric values (see the below example). And one is using ascii

characters to represent the names popularity (see the above example).

Specifically, in the character graph, ‘*’ is for names in the top 100 names for that

year, ‘^’ is for names in the top 500 (but not in the top 100), ‘+’ is for names in

the top 900 names (but not in the top 500), and ‘-‘ is for names ranking in the

final category. Note that we will begin printing the graph for 1910, not 1900.

Implement a function, which prints out the entire contents of the baby data in the

format shown in the sample output files. Be sure to use the function you just

wrote that prints out a popularity graph for a single name. For example a small

portion of the output table would look like this:

…
Name: Zona
Popularity by year:
1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
--
707 879 0 0 0 0 0 0 0 0
--
Name: Zora
Popularity by year:
1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
--
574 849 908 0 0 0 0 0 0 0
--
Name: Zoraida
Popularity by year:
1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
--
0 0 893 584 576 689 0 0 0 0
--

…

Section 3: The main function…

Write a main function, which reads in the data from the data file (called names-

data.txt), which is available in the class examples file on the class webpage. Then

write a main loop, which allows the user to choose what they would like to do, search

for a specific name or print the table. The user can keep searching for different

names until they are done. For example, when the program first starts off it says:

Welcome to the name popularity program

Reading in name data file
Done! Read in 4429 records
If you would like to search for a name, enter 1.
To print the entire list of names, enter 2.
To exit the program, enter -1.
Enter choice:

Section 4: Testing against input

I highly recommend testing your program using an input file. You can redirect input

from standard input (the console) to instead come from a file. You can do this by

using the < on vogon. For example:

 12:01pm vogon ~>a.out < input_file.txt

where input_file.txt is the name of a text file that contains the input for your program.

Example input files will be on the class webpage.

In addition, you can re-direct output to a file as well, using > on vogon. For example:

 12:01pm vogon ~>a.out < input_file.txt > output_file.txt

where output_file.txt is the name of a text file that contains the output generated by

your program. Example output files will be provided at a later date.

Finally, you can use the diff command on vogon to display any differences in two

files. For example:

 12:01pm vogon ~>diff file1.txt file2.txt

will print out any differences between file1.txt and file2.txt. Once you have written

your program, run it with the sample input files and save the output and use the diff

command to make sure all your calculations are as expected.

Section 5: Handing in Your Source Electronically…

1. Move the necessary file(s) to your vogon account using your favorite FTP client

program.

2. Log on to vogon using your favorite Shell client program.

3. Change directory (cd-command) to the directory containing the file(s) to hand in.

4. Be sure to compile and test your code on vogon using the required compiler flags

(-Wall –ansi – pedantic) one last time just before turning the files in.

5. Use the following handin command

 handin zwood csc101p4 babynames.c

6. You should see messages that indicate handin occurred without error. You can

(and should) always verify what has been handed in by executing the following

command:

 handin zwood csc101p4

