Chapter 1

The 2D Image domain

In computer graphics, our finished product is a discrete image.
T3]

| is a two dimensionalv by h (width by height) array of values, And so the valid
range the indecies 8 < i < w—1and0 < j < h — 1. For a black and white
image, each pixel value is a single number. For a color image, each pixel value is three
numbers representing red green and blue. In typical image formats, 8 bits are allocated
for each of the red green and blue channels per pixel. These can be fed to a monitor
and displayed as an image on a screen.

A discrete image is more than an array of values, it represents a regularly spaced set
of samples over a continuous two dimensional domain. One can thifiljpf as
a discrete realization of some image functidm,, y,,) over the continuous two dimen-
sional domain. We will use the subscript “p” to denote that these are two dimensional
pixel coordinates. To be precice then, we can think of Ji}l as associated with
the continuous two dimensional coordinaigs= i, andz, = j.

We often think of each sample as having a buffer of length 1/2 in each direction. If
we let the exterior boundary pixels have this buffer as well, then we can concider the
valid range of the continuous image domain to-hé < z, < w—.5and—.5 <y, <
h —.5.

1.1 World Coordinates

In computer graphics, one typically describes images by describing the locations of

various geometric shapes, for example a red triangle. The particular shapes are de-
scribed using coordinates. For example, a triangle is described by the positions of its

three vertices.

2 CHAPTER 1. THE 2D IMAGE DOMAIN

Let us suppose we wanted to specify the location of a triangle in some image. We
could specify the postions of the vertices usjng, y,,|* coordinages. This notation is
simply short for the column coordinate vector

)
Yp
It is not typically convenient to be thinking of locations in terms of pixels; if the user

decides that he wants an image of a different size, then he will need to explicitly recal-
culate the new coordinates of the same triangle.

To avoid this inconvenience, we would like to speak of postions in the image rect-
angle without knowledge of the pixel dimensions. To do this, we use a new coordinate
system, which we call the world coordinate system. We describe all of our coordinates
with repsect to this pixel independent coordinate system. We denote these coordinates
as|Ty, Yuwlt

Of course we also must specify the mapping between world and pixel coordinates.
The way we can do this is by explicity saying which range of world coordinates gets
mapped onto the valid pixel coordinate rang® < z, < w —.5and—.5 < y, <
h —.5. This range of world coordinates is specified by the fourtuple [world left, world
right, world bottom, world top]. In this case, the range of valid world coordinates is

left < =z, <right
bottom < 1y, < top

This range specification is sufficient to uniquely specify the (affine) mapping be-
tween these coordinate systems. With this specfication, any geometric points that have
their world coordinates betweeen left and right, bottom and top, get mapped to the valid
region of the image. Points outside of this range get “clipped” away, and ignored.

If we do not want any shape deformation of the object to occur, then we must make
sure that this range of world coordinates has the same aspect ratio as the range of pixel
coordinates.

One reasonable choice we recommend is

left = —w/h
right = w/h
bottom = -1
top = 1

1.2 Image Coordinates

As far as you the user is concerned, all that is important is world coordinates, and
maybe pixel coordinates. It turns out that it is useful for the rendering system to

1.3. COORDINATE CHANGES 3

use an intermediate coordinate system to describe points on their journey from world
coorindates to pixel coordinates. We call these intermediate coordinates image coordi-
natesiz;, y;|*.

Image coordinates give us a generic coordinate system in which to do some geo-
metric processing In this coordinate system, we concider the valid range of the image
to be

1.3 Coordinate changes

Given these three cooridinate systems, world, image, and pixel, we will need two trans-
formations, one to change world coordinates into image coordinates, and one to change
image coordinates into pixel coordinates. We want each of these transforms to have a
very specific form: a scale and shift in x coorindates, and a scale and shift in y coordi-
nates. Thus, the transform is governed by four parametels:, andf.

T, = CTy+d

Yy = eyw+f

The four parameters of the transform can be deterermined using the the four num-
bers that specify the valid range of coordinates. We consider each of the valid range
numbers as a constraint. Using these four constraints, we set up a system of four linear
equations and solve fet d, e, f.

-1 = cd+d
1 = cr+d
-1 = eb+f
1 = et+f

where I,r,t,b is left, right, bottom, top.

Using simple algera, we can solve for a, b, ¢, d obtaining:

_ 2 —r—1
Te = r—lxw r—1
2 —t—b

Yo = Tt T

The coordinate transformation between image and pixel coordinates can be com-
puted in the exact same way. One starts with the knowledge that the transformation is
a scale and shift

T, = gx;+h
Yp 1Y+

4 CHAPTER 1. THE 2D IMAGE DOMAIN

Sets up the constraints

-5 = g(-1)+h
w—.5 = gl+h

-5 = i(-1)+y
h—35 = il+j

And solves the equations obtaining

1.4 openGL commands

In openGL, the transformation between world and image coordinates can be controlled
using the command
gluOrtho2D(left,right,bottom,top)

In openGL, the transformation between image and pixel coordinates is controlled
using the commangdlViewport . If one wants to obtain the standard transformation
described in the previous section, one uses the arguments
glViewport(0,0,w,h) . Other arguments can be used if one wants to do fun
things like fit a bunch of images into a single window.

1.4.1 Simple program

Putting this together, we get the simple openGL program.

#include <stdio.h>
#include <stdlib.h>
#include "GL/glut.h"

int GW;
int GH;

void display(void){
glClear(GL_COLOR_BUFFER_BIT);
glBegin(GL_POLYGON);
glColor3f(1,1,1);

1.4. OPENGL COMMANDS

glVertex2f(-.5, -.5);
glvVertex2f(-.5, .5);
glColor3f(1,.5 ,.5);
glvertex2f(.5, .5);
glVertex2f(.5, -.5);
glEnd();
glFlush();
glutSwapBuffers();

void
reshape(int w, int h)

{

GW = w;

GH = h;

glViewport(0, 0, w, h);
glLoadldentity();

gluOrtho2D(-(float)w/h, (float)w/h, -1, 1);

/* Set Viewport */

6 CHAPTER 1. THE 2D IMAGE DOMAIN

main(int argc, char **argv) {

/* glut stuff */

glutinit(&argc, argv); [* Initialize GLUT */

glutinitDisplayMode(GLUT_RGB| GLUT_DOUBLE); /* Set Dis-
play mode */

glutinitWindowsSize(200, 100);

glutCreateWindow("my window"); [* Create window with given ti-
tle */

glViewport(0,0,200,100);

glutDisplayFunc(display); [* Set-up callback func-
tions */

glutReshapeFunc(reshape);

glutMouseFunc(mouse);

glutMotionFunc(mouseMove);

glClearColor(0,0,0,0);
gluOrtho2D(-2,2, -1, 1);
glShadeModel(GL_SMOOTH);

glutMainLoop(); [* Start GLUT event-
processing loop */

}

void changeSquareColor(){}

void
mouse(int button, int state, int x, int y) {
if (button == GLUT_LEFT_BUTTON)
if (state == GLUT_DOWN) { [* If the left but-
ton is clicked */
printf("mouse clicked at %d %d\n",x,GH-y-1);
}
changeSquareColor();
glutPostRedisplay();

}

void mouseMove(int x, int y)X{
printf("mouse moved to at %d %d\n",x,GH-y-1);

}

1.4. OPENGL COMMANDS

CC testc \
-lglutl75 -IGLU -IGL -IX11 -IXmu

