
CSC 476 – Lab 1 due 1/19/17
A Simple Game

Mode: Please note that this lab can be completed in pairs – it is up to you.

Overview: This assignment requires you to develop a simple 3D game program that implements a
simple adventure game in which a player moves around a 3D scene and collides with objects,
collecting them. In the game, key presses control the player’s position and the player’s view
direction is controlled via the mouse. The game scene includes a ground plane. When the game
starts the only 3D object that appears in the scene is the ground plane. But, every few seconds a new
object automatically appears on the ground plane at a random position. After an object has entered
the game it moves at a constant velocity to a new position every frame, though objects must avoid
colliding with other objects and they must not move off the grid. The goal of the game is for the
player to collect all the objects by colliding with them. Points are scored by successfully capturing
an object ("hit").

• Learning Objectives
o Practice implementing a game data structure that adds and removes 3D objects by storing
them in a linked list or vector
o Practice implementing object updating by traversing the collection of game objects using
time based movement
o Practice implementing object collision checking by using axis aligned bounding boxes
(AABB) or bounding spheres (your choice)
o Practice implementing camera motion control using time based movement
o Practice keeping track of game data (and potentially practice text display in a drawing
window by drawing bit mapped font characters (or other methods)) – data can be printed to the
console for this program
o
• Problem Specifications

Here are the rules of this game and specifications for your implementation of the game.
1. Ground plane
§ The 3D scene contains a ground plane that is in the X-Z plane (i.e., in the plane defined by
the plane equation y = 0). You may include any other scene elements you’d like (for example
some simple hierarchical models in the scene) – if you do include scene elements you do not
need to compute collision with them, but I encourage you to try.
2. Game objects
§ Sitting on the ground plane, during the game one or more 3D objects which have a clear
orientation (i.e. a front and back) will appear over time. The size, structure, color, and other
attributes of the objects will be determined by the game developer (you). With the exception that
the object must be a mesh file (obj). These objects must be shaded! Use vertex buffer objects
or Vertex Array Objects to display of the game objects.

§ Each object has a current position, orientation, and velocity (this is a good time to start
thinking about software design)
§ When the game starts there are no meshes to collect. Each collectible mesh will be placed
one at a time onto the ground plane automatically every P seconds. You may choose the value
for P, or you may handle it as an input value supplied at run time. Each new object must be
initially positioned at a random X and Z coordinate, but with a Y coordinate such that the bottom
of the object sits of the ground plane (Y=0). However, an object may not be placed off the edge
of the grid and it may not be placed so that it overlaps with another object.
§ Every frame each object moves in a constant velocity in its straight ahead direction to a new
position. But, an object may not move off the edge of the grid, and an object may not move so
that it collides with another object. If an object’s bounding box is about to go off the grid, it
must reverse its direction. If an object is about to collide with another object, it should either just
freeze and not move for that frame (note: this could lead to deadlock for two objects that are
moving towards each other, but in this game you need not handle breaking such a deadlock) or
move in the opposite direction. The game developer (you) may specify that all objects have the
same velocity or that they have random velocities (within a minimum and maximum velocity
range), and you may specify how the initial direction of an object's motion is determined. Please
consider spending some time tweaking variables so that movement is decent – playable.
§ The goal of the game is for the “player” to collide with each object to make them stop
moving. You may play with other effects when collision has happened but at very least the
object must stop moving and have its color change – ie there must be some visual side effect to
‘show’ the user they have collided with the mesh.
§ The game keeps track of the current number of "objects on the ground" and the current
number of "objects collided with". This data can be displayed to the console or screen
3. Game Player
§ The player has a current position and orientation. The game camera is attached to the
player so the player and camera will always have the same position and orientation used to
control the camera view. Therefore, this game is a "first person" type of game. There is no
geometry of the player that needs to be rendered.
§ The player (camera) may move however you determine is best, but the user must be able to
control:
§ the look direction yaw and pitch (but not roll).
§ forward and back motion (“w”/”s” keys or up/down arrow) and side to side strafing
(“a”/”d” keys or left/right arrow). The player's direction of forward motion is the same as the
current camera view orientation (as set by the mouse controls).
§ The player may not move below the ground plane (y=0), but the player may move to any x or
z position and to any y >= 0.
§ The speed of motion (player/camera velocity) is initially set at a default value, but you may
add keys to increase the speed if desired.
§ Optional: consider adding a weak spring to your camera to help with more natural movement
(camera lags behind the user slightly).

§ All animations must use ‘time based movement’. Search for current tutorials on Time Based
Movement, (or to be even more pedantic.: http://gafferongames.com/game-physics/fix-your-
timestep/ /).

During the game the current value of several variables is displayed (in text within the game window
or to the console): frame rate, count of # of 3D objects currently in the scene, count of # of objects
encountered (i.e. collided with = game score).

Note: This game uses no spatial dataset for determining whether objects might collide. Objects will
be stored in a linked list (or vector), and processing them (collision checking and drawing) will be
done by linear list traversal. Thus, all objects are drawn even if they are outside the field of view
(they will be clipped by the OpenGL rendering pipeline). Checking for object collisions will be an
O(N2) complexity operation (for N = # of 3D objects). Thus, if the player is slow at picking up
objects, more and more objects will be created and the frame rate may get slower (depending on
mesh complexity and number of objects). Potentially, slower frame rate makes motion control for
the player more difficult, so poor play is penalized and leads to low scores. Limit the number of
meshes that can enter the game to 10-50 (your choice depending on scaling – more meshes makes
non-overlapping placement challenging depending on scale). Note that you must use Vertex Buffer
Objects or Vertex Array Objects to represent and display the meshes.

In general, this lab is intended for you to consider how you might like to proto-type software design
for your team game. Think about: how you might like to design a game object class, a camera class,
a more sophisticated shader class (consider using how to handle uniform and attribute variables in
general) and other aspects of your game. This is a chance to practice/experiment with various
software design choices – your goal is for your team to choose the best “lab 1” to use as the start to
your final game project. You can look at these articles on game programming patterns:
http://gameprogrammingpatterns.com/contents.html
And this opinion piece about OO vs. entity:
http://cowboyprogramming.com/2007/01/05/evolve-your-heirachy/

• Programming Design and Implementation Information (if you want to propose an
alternative reasonable design you can).
0. 3D object class
This is a good time to design a C++ class for your 3D object (I like most part of this short intro:
http://homes.cs.washington.edu/~tom/c++example/c++.pdf)
1. The class traditionally includes a constructor, destructor, a step (update) function, and a
draw function. You may include other functions if needed.
§ An object must have these data members:
§ (x,y,z) position, e.g., it's center point
§ (x,y,z) direction vector (y direction component must be zero)
§ a scalar velocity (or if desired you may store ‘velocity’ in the direction vector)

§ an axis aligned bounding box (or AABB): min x,y,z and max x,y,z or bounding sphere
Hint: the bounding box coordinates could be relative to the object's position. If so, then the step
function will not have to change the bounding structures values appropriately or keep track of a
transform matrix (and apply prior to collision)
§ The constructor must initialize the position, direction, velocity, and bounding box subject to
the constraints described above.
§ The step function receives one parameter, dt, the elapsed time. It must update the position by
converting dt into elapsed time in seconds, then using that time value, the velocity and direction,
update the position. However, it must check two constraints:
1. If the new position would be off the grid, negate the direction vector and recompute the new
position.
2. If the new position would cause the object's bounding box to intersect the bounding of any
other object, do not update the position.
§ The draw function should draw the object's geometry using OpenGL functions. You must
use vertex buffer objects or vertex array objects to draw the meshes.
§ Your mesh should be oriented correctly in the direction it is traveling

2. 3D objects collection
§ All objects must be stored in a linked list or stl vector. You may choose how to implement
the linked list, either as simple pointer variables as one of the object's data members (e.g., a
"next" variable), as a separate class, by using the C++ STL (Standard Template Library) linked
list class, or other design of your choice. You may declare the head of the list as a global
variable, or you may choose an alternate design.
§ Drawing the entire scene should be done by traversing the objects in the linked list and
invoking each object's draw function.
§ Checking for collisions between objects when the step function updates an object's position
should be done by traversing the linked list and comparing the object's bounding box to the
bounding box of every other object (a second list traversal).
Note: this is an O(N2) computation. Later in this course you will learn algorithms to reduce the
complexity of such a comparison.

Grading:
o Correct game camera: 15
o Accurate collisions and reasonable response: 25
o Mesh (time- based) movement:15
o Mesh orientation: 10
o Mesh shading and game look (is it primary colors? Too dark?): 20
o General game statistics & software design: 15

