
February 15, 2017 CSC 357 1

Assignment #3

Decomposition Outline Due: February 8, 2017 11:59pm
Due: February 15, 2017 11:59pm

Overview
The primary purpose of this assignment is for you to gain additional experience working in C. Specifically,

you will be working with file I/O and dynamic data structures. A secondary purpose, by nature of the project,
is to gain additional familiarity with make.

For this assignment you will implement smake, a simplified version of the popular make utility. This program
will actually be a greatly simplified version of make, but it will support many of the most commonly written
simple makefiles (that do not use variables).

Topics: data structures, files, text processing, introduction to subprocesses, file statistics (timestamps)

Decomposition Outline Document
You must submit a program decomposition outline by the posted due date. Be certain to include enough

detail to make it clear that you have given careful thought to the construction of this program.
You must outline the data structures that you expect to use.



February 15, 2017 CSC 357 2

File Format

For our purposes, a Smakefile will consist only of a set of rules. Blank lines (i.e., those consisting only of
whitespace) are completely ignored.

A make rule consists of a target, a set of dependencies, and a set of actions.

target : dependency1 ... dependencyN
action1
...
actionM

Each action line must start with a tab (‘\t’) character. Though this is an annoying fact when writing your
own make files, it does simplify parsing the file. Any non-blank line that does not start with a tab is a rule. If
a rule is missing its separator (‘:’), then report an error (only a single separator is allowed). Your program is
only required to support one target per rule. You should not make any assumptions about the spacing around
the separator.

Dependencies : Each dependency is, conceptually, a file name.

Target : The target also, conceptually, names a file.

Actions : Each action is assumed to be a valid Unix command. These commands are executed when it is
determined that the target is out-of-date (see below).

For example,

main : main.o other.o echo
gcc -o main main.o other.o
echo "Done!"

echo :
echo "Echo"

main.o : main.c
gcc -c main.c
echo "main built"

other.o : other.c
gcc -c other.c
echo "other built"

This example contains four rules. The rule for echo contains no dependencies.
For this assignment, we will ignore variable definitions and uses, any circular dependencies, and multiple rules

with the same target (by ignore them, I mean that you need not even check for them, though you are certainly
allowed to extend your solution to account for such features).



February 15, 2017 CSC 357 3

Rule Processing

Rules are applied in an attempt to update the target only if one of its dependencies has been updated. make
(and therefore smake) is based on the concept of files and timestamps as the discussion below reflects.

A rule is processed according to the following steps.

• Validate each dependency.
For each dependency (main.o, other.o, and echo for the first rule in the example), execute the following
steps.

– Determine the type of dependency.
A dependency can be categorized as one (or two) of the following.

1) The target of another rule. If the dependency is the target of another rule (such as echo for the
first rule in the example), then recursively apply that rule. Do this even if the dependency also
corresponds to an existing file (such as main.o for the first rule in the example).

2) A file. If the dependency is a file (such as main.c for the third rule in the example), then see the
next step.

3) Nonexistent. If the dependency does not exist (it is neither a target nor a file), then report an
error (this is the “No rule to make target” error reported by make).

– Determine if the dependency has been updated.

∗ If the dependency is a file, then it is considered updated if the file’s timestamp is more recent
than the target’s timestamp (this is based on the modification time which is accessible using one
of the stat related functions).

∗ If the dependency is the target of another rule and the actions for that rule were executed as part
of the validation step above, then this dependency is considered updated.

∗ Note that either or both of the above may apply to a dependency that is both a file and the target
of a rule. So a file dependency may be considered updated if the timestamp is more recent or if
the rule corresponding to the name was executed.

• Execute this rule’s actions if

– there are no dependencies (as for the second rule in the example).

– a file with a name matching the target does not exist.

– any of the dependencies has been updated (determined by the previous step).

Based on these steps, one can view the processing of a rule as a tree traversal (though this does not imply
that you must or even should use a tree data structure to implement this). Consider the following tree rooted
at the rule for main from the example above.

echomain.o other.o

main

main.c other.c

file

rule

both

Target main has three dependencies. Two correspond to both rules and files. The third corresponds only to a
rule. Each of the rules is recursively applied. The first, main.o, depends only on a file (namely, main.c). If the
timestamp for main.c is newer than that of main.o (or if main.o does not exist), then the actions for main.o
are executed. Otherwise, nothing happens. The rule for other.o works similarly. The rule for echo contains no
dependencies, so its actions will be executed.

Once the rules for all dependencies have been applied, it can be determined whether the actions for main
should be executed. If either main.o or other.o has a newer timestamp (or if their corresponding rules executed



February 15, 2017 CSC 357 4

their associated actions), then the actions for main will be executed. Similarly, if the actions for echo were
executed (which they always will be in this example), then the actions for main will be executed.

Tasks

smake
You are to write the smake utility. When the program begins executing, it attempts to open a file named

Smakefile in the current directory. If this file cannot be opened for reading, then execution terminates with
an error. If the file can be opened, then processing continues by parsing the file and applying a first rule (see
below).

This program can optionally take one command-line argument. If no argument is provided, then the first
rule in Smakefile is applied. If an argument is provided, then the rule with target equal to the argument is
applied (this rule becomes the root of the tree discussed previously). If there is no matching rule, then execution
terminates with an error.

To execute the actions for a rule (when appropriate) you can use the system library function. If any executed
command fails, report the error and exit immediately with an error code. The actions, when executed, must
execute in the order given in the action list.

Output: Whenever a command is to be executed, first echo the command to standard out (just as make
does) and then execute the command.

Useful Functions
You might find the following functions to be of use (this is not to say that you will need them all or that you

will not use others)

strtok, strsep, strdup, strcat, strcpy, system, stat, lstat

Though we will discuss the stat functions in more detail, you can take the following code snippet as an
example of how to access the modification time for a file.

struct stat buf;
if (stat(pathname, &buf))
{

perror(pathname);
exit(-1);

}

// buf.st_mtime provides access to the modification time

Note
You may not assume any limits on line lengths, the number of rules, the number of dependencies per rule,

or the number of actions per rule.

Tips

• Practice iterative development.

• Decide on your data structure(s): implement and test these independently of the program.

• Process the file contents, store the appropriate data in your data structures, and then verify that the data
is stored correctly and easily accessible.

• Write and test functions to implement each step.

• Test early and often. If you delay testing until the entire program is written, then you may run into
difficulty trying to isolate bugs.



February 15, 2017 CSC 357 5

Submit

• All source code.

• A Makefile that will build your program.

• A README file that specifies how to build your program and that describes anything about your program
that you feel I should know during grading.

Grading
Feature Percentage

Decomposition Document 10
Reasonable Final Decomposition 10

Core Functionality 60
Error Handling 10
Valgrind Check 10


