
March 1, 2017 CSC 357 1

Assignment #5

Due: March 6, 2017 11:59pm

Overview
This assignment requires interaction with the filesystem (via system calls), traversing a portion of the directory

hierarchy, and managing scarce resources. For this assignment you will write a program that acts like the Unix
find utility. This utility recursively searches a directory hierarchy for files. Once found, the utility can take a
number of actions. You will write a greatly simplified version1.

sfind
Your program, named sfind, will be executed as follows (note that the brackets are used to indicate an

optional argument, and the | is used to denote a choice between two flags):

sfind filename [-name str] -print | -exec cmd ;

The sfind program will recursively process all files in the hierarchy starting with filename (if this name is
not a directory, then no recursion will take place; files are to be processed in lexicographic order as determined by
either strcmp or strcasecmp). For each processed file, the specified action (-print or -exec) will be performed.

If the -name str switch is present, then only those files with str as a substring will be processed. Directories
are processed in the same manner as files, but they are also always examined as part of the recursive descent
(i.e., searched) even if they do not contain the specified substring.

If the -print action is specified, then the name (the complete pathname based on the starting directory) of
the processed file is printed to stdout. For example, the following command will list all files starting with the
current directory.

% sfind . -print

If the -exec action is specified, then another process must be created to execute the specified command. The
command cmd begins immediately following the -exec switch and continues until the ;2. Within the cmd, any
occurrence of {} (without spaces between) must be replaced by the processed filename (the complete pathname
based on the starting directory) prior to execution. For example, the following command will act much like the
command above, but will instead operate by executing echo with the name of each processed file.

% sfind . -exec echo {} \;

Note: When processing a directory’s contents, do not recursively follow the two special files “.” and “..”
and do not follow symbolic links.

Implementation Requirements
You must write your own directory traversal code using system calls like opendir and readdir. You may

not use any library routine to do the traversal for you (e.g., no use of scandir or the fts functions)3. You must
also write your own process creation and program execution code. You may not use the system library routine
in your solution.

Resource Management
All programs must properly manage the resources they use. In this respect, systems programs differ only in

that the resources they must manage are often more scarce than those used by general applications. To address
this issue, one will often use more readily available resources (e.g., memory) to avoid exhausting other resources.

If you are not careful in your implementation, then your program will likely run out of file descriptors and be
unable to continue. Do not allow this to happen. You must also prevent your program from hitting the process
limit.

1Take careful note of the fact that this is a simplified. You do not need to try to match all functionality of the existing find tool.
2Note that when running your program, you will need to escape the ; because most shells will process this as delimiting a

sequence of commands to execute. To escape the ;, use \;.
3Apply what you have learned here. Then use library functions in later projects.



March 1, 2017 CSC 357 2

Submit

• All source code.

• A Makefile that will build your program.

• A README file that specifies anything about your program that you feel I should know during grading.

Grading
Feature Percentage

Final Decomposition 10
Basic Functionality (including print) 25

exec 40
Resource Management 15

(memory, file descriptors, processes)
Error Handling 10


