
March 2, 2017 CSC 357 1

Assignment #6

Due: March 17, 2017 11:59pm

Overview
For this assignment you will implement a simple webserver that will support a subset of the Hypertext Transfer

Protocol (HTTP). This webserver will service multiple client requests by forking child processes to handle the
actual request logic. In addition, your server will support functionality for program invocation similar to the
common gateway interface approach.

Functionality
Your program, named httpd, will take one command-line argument specifying the port on which to listen

for connections. The port is an integer value given to the operating system when setting up the network
communications. A webserver usually listens for connections on port 80. Since this program will be run on
university machines (and at the same time as the solutions written by others in the course), you will need to
choose a different port. You may use any number between 1024 and 65535.

Basic Architecture
Your program must repeatedly receive and respond to requests. The protocol for the communication between

a client (i.e., a browser) and the server is discussed below. This section outlines the basic architecture of the
system.

Before accepting requests, your program must enable network communication. Once communication has been
enabled, your program will loop infinitely accepting connections and handling requests. The basic architecture
is

create_service
while (1)
{

accept_connection
handle_request // done in a child process

}

Forking
To handle multiple requests your server will spawn child processes. Each request is to be handled by a single

child process. Once the child process is spawned, your server will need to clean up any unneeded file descriptors
and it will eventually need to wait for child processes (this should be done via a signal handler).

HTTP
HTTP is a plaintext line-based protocol. This assignment requires that you support only two of the HTTP

request types: HEAD and GET.

Request
Each request will be one text line of the form: TYPE filename HTTP/version. For example,

GET /index.html HTTP/1.1

The server will attempt to locate the requested file and, if found, will send a reply with information pertaining
to the file and, if a GET request, the contents of the file. A HEAD request will only send information about the
file (the contents are not sent). For this assignment, though certainly not in a robust webserver, you can ignore
the HTTP version information on a request.



March 2, 2017 CSC 357 2

Reply
Each reply begins with a header. The header contains information identifying the type of response, the type

of any attached content, and the length of that content. HTTP supports additional fields in the header, but we
are only interested in a subset of HTTP 1.0. The header ends with a blank line. Each line of the header must
end with \r\n. The following is an example of a reply to a valid request (with the carriage-return, line-feed
explicitly shown):

HTTP/1.0 200 OK\r\n
Content-Type: text/html\r\n
Content-Length: 5686\r\n
\r\n
<---- contents here ---->

The contents come directly from the file without any interpretation. For this assignment, your program may
always specify text/html as the content type, regardless of file.

The response to a HEAD request provides the header only (no contents).

Error Responses
Erroneous requests will be responded to with an appropriate error response. Such a response should have

an error type (see below), a content type of text/html, and an appropriate snippet of HTML to be presented
to the user (this is often just the response type). The following are some standard responses that you may find
useful:

HTTP/1.0 400 Bad Request

HTTP/1.0 403 Permission Denied

HTTP/1.0 404 Not Found

HTTP/1.0 500 Internal Error

HTTP/1.0 501 Not Implemented

You are free to customize the HTML message (which becomes the contents of the response).

cgi-like Support
In addition to the basic behavior of providing files, your server will also provide support for executing programs

on the server and providing the output back to the user1.
Only the programs in the cgi-like directory (a subdirectory of the server’s working directory) may be

executed. These programs may be passed arguments as part of the request. These arguments are provided, in
the URL, after a ? following the program name and the arguments are separated by & characters. The arguments
themselves are simply strings. If there are no arguments, then there will be no ?.

As such, the request header for an attempt to run (as an example) the ls program might be as follows (to
list the two files mentioned in long format).

GET /cgi-like/ls?-l&index.html&main.html HTTP/1.1

Yes, the cgi-like directory name must immediately follow the / in order to be considered valid.
You will need to fork a process to execute this command. If the fork fails, then reply with a 500 error.
If the exec is successful, then your valid reply will need to include the size of the contents. This size, however,

cannot be determined until the command completes. As such, you should have the command redirect to a file
(use the child process’s pid in the filename to avoid conflicts), read and reply with the contents of the file once
the child has terminated, and remove the file after the reply is complete.

1This brings with it serious security implications, so don’t leave your server running for very long and implement the .. check
(see details) early.



March 2, 2017 CSC 357 3

Additional Details

• The client may close the connection while the server is processing the file. Be sure to handle this case
without the server crashing.

• We will require the user to always specify a filename. No special action will be taken if no file name is
provided (i.e., the request has /)2.

• We will not support the notion of users, so a URL with a ~ will not attempt to search a home directory.

• All file searches will be done from the directory in which the server is executed. Your server should prevent
any attempt to access files in directories above its working directory (e.g., using ..). If such a request is
received, reply with an error. Note that some browsers will automatically remove any .. in a filename, so
you may need to test this behavior using telnet (see below).

Resources
As with all programs, you must be careful to properly manage any resources used. Since a webserver is

supposed to run forever (or close to), you will need to be especially careful about your resource usage. Be sure
to free memory and close unused file descriptors. You can use the top program to monitor memory usage while
your program executes.

Testing
You can certainly use a browser to test your program. If run on the department machines (and you are

running your browser from a machine on the campus network, i.e., behind the firewall), then you can use
http://machine name:port selected/file. An alternative is to use telnet. When you execute telnet you
can provide the machine name (or IP address) and a port. telnet will then provide a prompt at which you can
input data to be sent to the server.

Submit

• All source code.

• A Makefile that will build your program.

• A README file that specifies how to build your program and that describes anything about your program
that you feel I should know during grading.

Grading
Feature Percentage

HEAD request 15
GET request 30

cgi-like support 25
Error Handling & Resource Management 20

Reasonable Decomposition 10

2Many servers will attempt to open a default file such as index.html.


