
January 9, 2017 CSC 357 1

Lab #1: Introduction

Overview
This lab is meant to serve as an introduction to the development environment that you will use for this course

and to the C programming language through multiple small exercises. Parts of these exercises are intentionally
repetitive to build your “muscle memory” for basic C syntax. In addition, you will use a debugger (gdb) to
explore the basics of the memory layout of C programs (this is an important illustrative step in understanding
pointers).

The Operating Environment
In this course you will develop programs in the Unix environment. You should be familiar with many Unix

commands (such as ls and cd) from previous courses. If you are not, take the time now to read through a Unix
tutorial (one is linked from the course website) and ask questions.

Editor
There are many different text editors available on the lab machines. Many people prefer to use either vi

(vim) or emacs. You are welcome to use either of those (and there are good reasons for doing so), or you may use
something else. My recommendation is that you select an editor that you can use through a remote connection
(allowing you to work on the department servers from elsewhere) or one that provides file transfer capabilities
(over scp), such as Sublime Text.

Some will stress the value of vi, noting that it is available on all Unix systems. This is true, but I leave
the choice to you. More importantly, I recommend selecting and learning an editor with features that aid in
programming.

Exercises
Download the lab1.tar.gz1 file from the course website and extract its contents into a local directory

(tar xzvf lab1.tar.gz). Within the lab1 directory you will find a subdirectory for each of the following parts.

Part 1
Just to get started, change into the lab1/part1 directory. In a new file named part1.c, write the infamous

Hello, World! program. This will require the following:

• Including stdio.h.

• Properly defining the main function (it can be defined with a void argument list for this).

• Using printf to print the string.

• Returning 0 to signify normal termination.

Compile and run your program as follows.

% gcc -Wall -ansi -pedantic part1.c
% ./a.out

The flags (or switches) provided to gcc (those that begin with a dash) are used to increase the amount
of feedback from the compiler regarding potential issues with the code. -Wall enables many warnings, -ansi
checks the source against the C standard (ISO C90 on the department servers), and -pedantic forces warnings
demanded by compliance with the standard. All of your programs, except when otherwise noted, must compile
cleanly (i.e., without warnings or errors) with these switches. You might even consider adding -Werror (to turn
warnings into errors) to avoid any temptation to let a warning slide.

The generated executable (assuming the source compiles) is stored as a.out. If the program fails to compile,
then the a.out, if present, will remain unchanged from the previous successful compile.

1Why a gzipped tar file instead of a zip file? Why not? This is a systems programming course in Unix, so it’s worth seeing
multiple formats

January 9, 2017 CSC 357 2

Part 2
Change into the lab1/part2 directory. For this part you will write a function that performs a simple

calculation and test cases for that function.
This program is split over multiple files. You will notice that some files have a .c extension whereas some

have a .h extension. Those with the .h extension are called header files. These files should only contain function
prototypes (the name, return type, and argument types for the function), structure definitions (discussed later),
symbolic constants, and extern declarations. They should not contain any “code” (i.e., they should not contain
function definitions).

Perform the following steps.

• In part2.c, #include math.h in order to use sqrt below.

• In part2.c, #include part2.h. Though this is not strictly required in this case, it will be necessary when
using structure definitions and it is common practice to allow the compiler to check function prototypes
against their definitions.

• In part2.c, define the calc function (taking and returning a double value) to compute the following.

calc(x) = sqrt(x + 37) ∗ 9− 14

• In part2 tests.c, write test cases for this function using the checkit macros (you can read about them
on the course webpage). One such test is already provided for you.

• Compile and run your program as follows. Verify that your tests pass. (Note that on some systems you
will also need to explicitly link the math library into your executable. You can do so by adding -lm to the
end of the gcc command line below (after the source file names)).

% gcc -Wall -ansi -pedantic part2.c part2_tests.c
% ./a.out

Some Details on Directives
You should examine the given header file. You will notice some lines that begin with #; these signify

preprocessor directives. The C compiler begins with a preprocessing phase during which a number of directives
are processed. These directives are used to guide some aspects of compilation. The most common of these is
#include. This directive says to include the contents of the specified file (a header file) in the current file (almost
like a copy-and-paste). Such a feature allows a programmer (you) to organize their program into multiple files
where each represents a logical unit of functionality or development.

Alas, one must be careful with #include as including the same file multiple times (most often through a
chain of one file including another which includes yet another where some ultimately include the same header
file) may lead to the same declarations being made multiple times. The C compiler will then complain about
redeclarations.

To prevent multiple declarations, the declarations in a header file are guarded with a #ifndef (“if not
defined”). This directive acts similarly to the if statement in C, but, in this case, is checking to see if a
preprocessor variable has been defined (in this case, PART2 H). If it has not been, then the variable is defined
and the declarations are compiled. If the variable had been defined previously (i.e., this file was already included
before), then the declarations are skipped.

Part 3
Change into the lab1/part3 directory. For this part you will write a function that performs a summation

of the elements in an array of integers. Following the structure of Part 2, define your program across the three
files part3.c, part3.h, and part3 tests.c.

You must write a function, sum, that takes, as arguments, an array of integers and an integer denoting the
length of the array. The function must return the sum of the integers in the array. The function definition be
written in part3.c with the prototype added to part3.h.

January 9, 2017 CSC 357 3

In part3 tests.c, write test cases for the sum function. Be sure to test an “empty” array; you can do so by
passing 0 as the length but with an array containing some non-zero number of elements (call it a little white lie;
C won’t mind).

Compile and run your program as in Part 2 (using the new file names, of course). Verify that your tests pass.

Part 4
Change into the lab1/part4 directory. For this part you will write a function that creates a lowercase version

of a given string. Again following the structure of Part 2, define your program across the three files part4.c,
part4.h, and part4 tests.c.

In C, a string is really just an array of characters (char) terminated with the \0 character (the null character).

1. Write the function, str lower, to take two arguments: the original input string and a buffer to store the
lowercase version of the input string2. Write the str lower function to copy into the buffer the lowercase
version of each character in the original string. You should use tolower from ctype.h to convert a character
to lowercase.

2. Write the function, str lower mutate. This function takes a single string argument and changes the
characters to lowercase by modifying the contents of the string itself. As such, the “result” is the original
argument. This style is not uncommon in C since strings are mutable, but it can lead to unintended
side-effects when there are multiple aliases to the same string.

Split this program over the three files as before and write a few test cases to verify correct functionality. Be
sure to properly terminate the new string (in the buffer) with the null character.

Part 5
make is a program that is commonly used to automate compiling. More specifically, make executes commands

based on a set of rules. These rules are defined as a set of dependencies and a target. If any of the dependencies
is “fresher” (the timestamp is more recent) than the target, then the commands for the rule are executed. This
is incredibly useful when a program is separated into many compilation units.

Change into the lab1/part5 directory. Examine the contents of Makefile (you can do so by executing
more Makefile). At the top of the file you will see multiple variable definitions (for, e.g., CC, CFLAGS, etc.). This
is done, as is often the case, to reduce duplication and to simplify making modifications.

Next you will see a number of rules that specify, in essence, how to build a program. One rule, for instance,
states that $(MAIN), which was defined to be example, depends on $(OBJS) (i.e., example.o and fact.o) and
fact.h. If example does not exist or if any of the dependencies was more recently changed, then the action code
will be executed.

Type make in the directory that contains the Makefile and the source files. Notice which commands were
executed. Now type touch fact.c (touch updates the timestamp on a file). Again, type make. By viewing the
Makefile, you should notice that only those commands for rules that depended on fact.c were executed (i.e.,
example.o was not rebuilt).

You will work with make for the remainder of the quarter. This small example was only meant to get you
started. Do not panic if some of this is unclear; model your future makefiles on this one and learn more as you
become more comfortable.

Part 6
In the lab1/part6/part6.h header file you will find the definition of a structure to represent a point in

two-dimensional space.
Perform the following steps.

• In part6.h, add the definition of a structure to represent rectangles in two-dimensional space. The rectangle
should be stored as the top-left and bottom-right points.

• In part6.c, define the is a square function. This function must take a rectangle and return true (non-
zero) if that rectangle is, in fact, a square. The function returns false, otherwise.

2The buffer is needed because an array (a string) declared locally to str lower would be stored on the run-time stack and, thus,
could not be safely returned. Alternately, one could dynamically allocate the buffer, but that comes later.

January 9, 2017 CSC 357 4

• In part6.h, add a function prototype for the is a square function.

• In part6 tests.c, add at least two test cases for your is a square function.

Note that the testing macros cannot directly compare structures (i.e., there is no checkit struct since
structs are user-defined). Though not necessary for this exercise, the provided files demonstrate tests on a
function (create point) that returns a struct by comparing each component of the resulting struct against
its expected value.

• Write a Makefile (modeled off of the one provided for the previous part) to build the program.

• make and run your tests.

Part 7
Write a simple program that takes command-line arguments and prints to the screen each such argument

that begins with a ‘-’ character. For instance, the following is the expected behavior.

% ./a.out here are -some command-line -arguments with some -dashes
-some
-arguments
-dashes

Part 8: Memory Layout Diagram
For this part of the lab you will explore some of the memory layout of the run-time stack by probing the

running program in the GNU debugger (gdb). Though the goal at present is exploration, gdb will save you time
later when you are trying to find and fix bugs (you will experiment with gdb in such a capacity in the next lab).

To use the debugger to its fullest extent, you will need to compile your program with the -g switch. In the
lab1/part8 directory, modify the given Makefile to add the -g switch to the CFLAGS variable and then build
the program.

The simplest way to begin gdb is to specify the name of the program that you would like to debug. The
following abbreviated transcript shows the commands that you should execute (it does not include their output).

Start gdb and execute this sequence of commands. Pay particular attention to the responses from gdb (the
important points for this lab are denoted by a <--- comment from me). You will be asked to draw a diagram
of the run-time stack based on the addresses you see during this run.

% gdb layout
(gdb) break main
(gdb) run
(gdb) s
(gdb) s
(gdb) s <--- should be on line 19, just before call to function_one
(gdb) print &first <--- print the address of the variable (i.e., where in memory

this variable is stored; on the stack)
$1 = (int *) 0xXXXXXXXX <--- not actual output, keep track of the real number

if you prefer decimal format, use ’print /d &first’ above
(gdb) print &second
$2 = (int *) 0xXXXXXXXX <--- keep track of the real number

Notice the difference in these two addresses.
(gdb) print &p
$3 = (int **) 0xXXXXXXXX <--- keep track of the real number

This is the location/address of variable p,
as above, not its value.

(gdb) print p <--- this is p’s value, the address it points to, which is?
(gdb) print *p <--- this is the value at the address where p points

January 9, 2017 CSC 357 5

(gdb) s <--- step into function_one
(gdb) s <--- step through initialization
(gdb) print function_one_local
(gdb) print &function_one_local <--- keep track of this result
(gdb) s
(gdb) s <--- step into function_two
(gdb) print &function_two_local <--- what happened here?
(gdb) print function_two_local <--- what happened here?

Draw the segment of the run-time stack that corresponds to this execution (just before the program ter-
minates). In particular, label appropriate cells with their addresses and, if available, their names. For those
variables with values, list the values in the cells. For the pointer, p, draw an arrow to the cell it “points to” (i.e.,
the cell with address equal to p’s stored value).

To get you started, first and second should label cells near each other (with the addresses given during the
gdb run). first has the value 111 and second has the value 222.

Demonstration
After you have completed the above parts, call me over so that I can record your completion of this lab. You

can (and should) continue with next part while waiting for or after your demonstration.

man Pages
You should learn to consult the man(ual) pages when you’re looking for additional information about com-

mands and standard C library functions. Getting used to reading man pages does take time (they can be quite
dense), but they are incredibly useful.

At the shell prompt, execute the following commands (read as much about each as you are interested in, but
do not skip the pages for getchar and putchar).
Basic Commands

% man ls
% man mkdir
% man cp
% man mv
% man rm

Programs used in this lab

% man tar
% man more
% man make
% man touch
% man gcc
% man gdb
% man man

A few C library functions

% man getchar
% man putchar
% man printf
% man strcpy

