CSC 431: Programming Languages II

Instructional Information

Professor: Aaron Keen
E-mail: akeen@calpoly.edu
Office: 14-228
Office hours: M: 3–4pm, T: 3–4pm, W: 3–5pm, F: 3–4pm
Course Webpage: http://www.csc.calpoly.edu/~akeen/courses/csc431

Lecture Time and Location

Lecture: TR 12:10pm – 1:30pm, 52-E03
Lab: TR 1:40pm – 3:00 pm, 14-255

Course Objectives

- Explore the design and implementation of a compiler.
- Focus on issues related to the “back-end” of a compiler.
- Understand and implement code transformations.
- Gain appreciation for what an optimizing compiler can do and the implications on how you write code.

Prerequisites: CSC 430

Texts

The recommended course textbook is *Engineering a Compiler* by Cooper and Torczon or *Compilers: Principles, Techniques, and Tools* by Aho, Lam, Sethi, and Ullman. Supplemental materials will be linked from the course webpage.

Webpage

Clarifications, changes, etc. regarding the class and assignments will be posted to the course webpage (http://www.csc.calpoly.edu/~akeen/courses/csc431). Read it regularly, especially near when assignments are due. You are responsible for any announcements posted on the course website.

Activities

Class Participation

The lectures are for your benefit. You should ask questions when you have them. Use lecture time to discuss general approaches to the project.

Project

There will be one large project with multiple milestones. The due dates for the milestones are listed on the schedule. You are allowed, but not required, to work with a single partner on the project.

Each milestone must be demonstrated in lab on the day that it is due to earn full credit. Milestones are graded based on a somewhat subjective measure of how “complete” the required functionality is. Milestone completion may be demonstrated by the “final demonstration” date for partial credit.

You must submit your final project by the date specified on the schedule. This submission must include all of your source code, instructions on how to build your project, and instructions on using your compiler.
Exams
There will be no exams. You may rejoice now or later.

Paper
Each group will submit a paper detailing the design and implementation of their compiler project. At least half of the grade for the paper will depend on the presentation of some performance analysis of the code generated by the group’s compiler. Further details are provided on the course website.

Grading
The percentage breakdown for the course grade is as follows.

<table>
<thead>
<tr>
<th>Activity</th>
<th>% per</th>
<th>% total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milestones</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>Final Submission</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Paper</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Choose Your Own Adventure – Project Paths
Each final project submission will be evaluated based on the ability to generate valid (ideally, assembly code) for the provided acceptance tests. There are multiple legitimate (primary) paths to completing the project, with varying time commitments and, as such, varying potential final course grades (as dictated by the grading breakdown). These are summarized as follows.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Maximum Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLVM-only</td>
<td>Register-based LLVM - without optimizations (1–3)</td>
<td>D</td>
</tr>
<tr>
<td>LLVM-opt</td>
<td>Register-based LLVM - with optimizations (1–5)</td>
<td>C</td>
</tr>
<tr>
<td>Barebones</td>
<td>Assembly from stack-based LLVM - without optimizations (1,2,6,7)</td>
<td>C</td>
</tr>
<tr>
<td>Straight Line</td>
<td>Assembly from stack-based LLVM - with optimizations (1,2,4–7)</td>
<td>B</td>
</tr>
<tr>
<td>Registered</td>
<td>Valid assembly from register-based LLVM - without optimizations (1–3,6,7)</td>
<td>B</td>
</tr>
<tr>
<td>All In</td>
<td>Valid assembly from register-based LLVM - with optimizations (1–7)</td>
<td>A</td>
</tr>
</tbody>
</table>

Collaboration and Cheating
Students may work in pairs on the project. Each student/pair is expected to complete their own project without collaboration with others.

It is fine to talk with others about general approaches to the project, but each student/pair is to develop their own solution; collaborative efforts beyond a recognized pair are not allowed. Students/pairs are not to view any other student’s code or exchange code in any form (hardcopy or electronically). Sharing pseudo-code is not allowed.
The Last Page

This page is so that I can gather a little information about you at the beginning of the class. Please fill it out, tear it off and leave it with me on the way out.

Who are you?

Name: ________________________________
Section: ______________________________
Major: ________________________________
Email: ________________________________
Enrollment: ___ Enrolled
 ___ Enrolled, thinking about dropping
 ___ Thinking about signing up

Class Expectations?

Please take a minute to write out what your goals and expectations are for CSC 431. What do you want to learn? What do you expect to learn? Are these the same thing?