
October 11, 2019 CSC 530 1

Assignment #2: Typed Lambda Calculus

Overview

The goal of this assignment is to build the foundational type system implementation over lambda expressions
with simple boolean and arithmetic terms.

Starting Point
Copy the enumerated type for Expression from Assignment #1 declared in src/arith/expr.rs. You can

also copy the utility functions in src/arith/build.rs if you wish.
You will eventually need to extend the definition of Expression to include variables, function applications,

and function abstractions. You can do this immediately, or after implementing the typing rules for boolean and
arithmetic expressions.

Representing Types
Define a new enumerated type to represent the valid types for this language. As you can infer from the typing

rules on the last page, the valid types are Bool, Int, and function types.

Typing Context
You will need to determine a representation for a typing context (i.e., Γ). There are many perfectly valid

representations. For the purposes of the course project, you might consider a vector or a HashMap.
Whichever data structure you choose, give careful consideration to how mutation of the data structure might

affect your implementation.

Tests
Include in your submission a set of tests verifying that your implementation works as expected, both for

terms that are well-typed and terms that are not.
At a minimum, include a set of tests translated from Problems 1 and 3 in the Ungraded Problem Set #2.

Typing Function
Implement, in Rust, the typing rules given on the last page.
As with the evaluator in Assignment #1, your type checker is to be implemented as a function (with additional

supporting functions) in a library (i.e., there is no need for a main; this function will be exercised through test
cases). This function should take a term to check and a typing context as arguments. This function should
return a Result of either the (Ok) type for the term or an (Err) error string indicating the typing rule that failed
(as labeled in the set of typing rules) and the reason for the failure. You have some freedom to choose how these
errors will look (and, if you prefer, you can use a type other than string for the error), but they should provide
adequate information about what went wrong.

Grading
Grading will be divided as follows, and will be based on both functionality and quality of implementation.

Part Percentage

Bool (T-True, T-False, T-IF) 15
Int (T-IntConst, T-IsZero, T-Add, T-Sub) 15

Lambda (T-Var, T-Abs, T-App) 60
Tests 10



October 11, 2019 CSC 530 2

The terms for the expression language are to be inferred from the rules below coupled with the discussion in
lecture (and in the textbook). Your implementation, of course, will work on the internal AST representation of
such expressions, so you should be able to map the terms used in the typing rules to the variants declared in the
Rust code.

nv is for numeric values.

Γ ` true : Bool (T-True)

Γ ` false : Bool (T-False)

Γ ` t1 : Bool Γ ` t2 : τ Γ ` t3 : τ

Γ ` if t1 then t2 else t3 : τ (T-If)

Γ ` nv : Int (T-IntConst)

t1 : Int

Γ ` iszero t1 : Bool (T-IsZero)

Γ ` t1 : Int Γ ` t2 : Int

Γ ` t1 + t2 : Int (T-Add)

Γ ` t1 : Int Γ ` t2 : Int

Γ ` t1 − t2 : Int (T-Sub)

x : τ ∈ Γ
Γ ` x : τ (T-Var)

Γ, x : α ` t1 : β

Γ ` λx : α. t1 : α→ β (T-Abs)

Γ ` t1 : α→ β Γ ` t2 : α

Γ ` t1 t2 : β (T-App)


