
October 18, 2019 CSC 530 1

Assignment #3: Records and Variants

Overview

This assignment extends the type system implementation to support records and variants (and unit, for
convenience).

Starting Point and Data Extensions
Extend your solution to Assignment #2. Extend your type representation to include representations for

records, variants, and unit. There should be no explicit restrictions on the number of fields within a record
or the number of labels within a variant. Extend your expression representation to include terms for record
construction, record projection, variant construction, case, and unit.

Tests
Include in your submission a set of tests verifying that your implementation works as expected, both for

terms that are well-typed and terms that are not.
As before, include a set of tests translated from the examples in the Ungraded Problem Set #3.

Typing Function
Extend your typing function to implement the new typing rules given on the last page.

Grading
Grading will be divided as follows, and will be based on both functionality and quality of implementation.

Part Percentage

Unit (T-Unit) 5
Records (T-Rcd, T-Proj) 45

Variants (T-Variant, T-Case) 45
Tests 5



October 18, 2019 CSC 530 2

The terms for the expression language are to be inferred from the rules below coupled with the discussion in
lecture (and in the textbook). Your implementation, of course, will work on the internal AST representation of
such expressions, so you should be able to map the terms used in the typing rules to the variants declared in the
Rust code.

nv is for numeric values.

Γ ` true : Bool (T-True)

Γ ` false : Bool (T-False)

Γ ` t1 : Bool Γ ` t2 : τ Γ ` t3 : τ

Γ ` if t1 then t2 else t3 : τ (T-If)

Γ ` nv : Int (T-IntConst)

t1 : Int

Γ ` iszero t1 : Bool (T-IsZero)

Γ ` t1 : Int Γ ` t2 : Int

Γ ` t1 + t2 : Int (T-Add)

Γ ` t1 : Int Γ ` t2 : Int

Γ ` t1 − t2 : Int (T-Sub)

x : τ ∈ Γ
Γ ` x : τ (T-Var)

Γ, x : α ` t1 : β

Γ ` λx : α. t1 : α→ β (T-Abs)

Γ ` t1 : α→ β Γ ` t2 : α

Γ ` t1 t2 : β (T-App)

for each i Γ ` ti : τi

Γ ` {li = ti
i∈1..n} : {li : τi

i∈1..n} (T-Rcd)

Γ ` t1 : {li : τi
i∈1..n}

Γ ` t1.j : τj (T-Proj)

Γ ` tj : τj

Γ ` 〈lj = tj〉 as 〈li : τi
i∈1..n〉 : 〈li : τi

i∈1..n〉 (T-Variant)

Γ ` t0 : 〈li : τi
i∈1..n〉 for each i Γ, xi : τi ` ti : τ

Γ ` case t0 of 〈li = xi〉 ⇒ ti
i∈1..n : τ (T-Case)

Γ ` unit : Unit (T-Unit)


