
November 1, 2019 CSC 530 1

Assignment #4: Subtyping

Overview

This assignment extends the type system implementation to support subtyping on record and function types.

Starting Point
Extend your solution to Assignment #3. There are no new types or terms to add. Instead you will update

the typing for application (T-App) and if (T-If1, T-If2) to allow for subtyping.

Tests
Include in your submission a set of tests verifying that your implementation works as expected, both for

terms that are well-typed and terms that are not.
Include a set of tests translated from the examples in the Ungraded Problem Set #4.

Typing Function
Extend your typing function to support subtyping in application (T-App) and if (T-If1, T-If2). For if, your

implementation should support at least promoting the type of one branch to that of the other (in either direction,
as indicated by T-If1, T-If2), but you can explore promoting to a common ancestor (the least upperbound)
via a lattice join if you wish.

Grading
Grading will be divided as follows, and will be based on both functionality and quality of implementation.

Part Percentage

Record Subtyping (S-Rcd) 35
Function Subtyping (S-Arrow) 35

Subtyping: Application (T-App) 10
Subtyping: If (T-If1, T-If2) 10

Tests 10



November 1, 2019 CSC 530 2

The terms for the expression language are to be inferred from the rules below coupled with the discussion in
lecture (and in the textbook). Your implementation, of course, will work on the internal AST representation of
such expressions, so you should be able to map the terms used in the typing rules to the variants declared in the
Rust code.

nv is for numeric values.

Γ ` true : Bool (T-True)

Γ ` false : Bool (T-False)

Γ ` nv : Int (T-IntConst)

t1 : Int

Γ ` iszero t1 : Bool (T-IsZero)

Γ ` t1 : Int Γ ` t2 : Int

Γ ` t1 + t2 : Int (T-Add)

Γ ` t1 : Int Γ ` t2 : Int

Γ ` t1 − t2 : Int (T-Sub)

x : τ ∈ Γ
Γ ` x : τ (T-Var)

Γ, x : α ` t1 : β

Γ ` λx : α. t1 : α→ β (T-Abs)

for each i Γ ` ti : τi

Γ ` {li = ti
i∈1..n} : {li : τi

i∈1..n} (T-Rcd)

Γ ` t1 : {li : τi
i∈1..n}

Γ ` t1.j : τj (T-Proj)

Γ ` tj : τj

Γ ` 〈lj = tj〉 as 〈li : τi
i∈1..n〉 : 〈li : τi

i∈1..n〉 (T-Variant)

Γ ` t0 : 〈li : τi
i∈1..n〉 for each i Γ, xi : τi ` ti : τ

Γ ` case t0 of 〈li = xi〉 ⇒ ti
i∈1..n : τ (T-Case)

Γ ` unit : Unit (T-Unit)



November 1, 2019 CSC 530 3

S <: S (S-Refl)

S <: U U <: T
S <: T (S-Trans)

Γ ` t : S S <: T
Γ ` t : T (S-Sub)

P2 <: P1 R1 <: R2

P1 → R1 <: P2 → R2 (S-Arrow)

{li i∈1..n} ⊆ {kj j∈1..m} kj = li implies αj <: βi

{kj : αj
j∈1..m} <: {li : βi

i∈1..n} (S-Rcd)

Γ ` t1 : Bool Γ ` t2 : τ1 Γ ` t3 : τ2 τ2 <: τ1
Γ ` if t1 then t2 else t3 : τ1 (T-If1)

Γ ` t1 : Bool Γ ` t2 : τ1 Γ ` t3 : τ2 τ1 <: τ2
Γ ` if t1 then t2 else t3 : τ2 (T-If2)

Γ ` t1 : α→ β Γ ` t2 : α′ α′ <: α

Γ ` t1 t2 : β (T-App)


